Skip to main content

Ionic liquid based dispersive liquid-liquid microextraction combined with ICP-OES for the determination of trace quantities of cobalt, copper, manganese, nickel and zinc in environmental water samples

Abstract

We describe a method for ionic liquid based dispersive liquid-liquid microextraction of Co(II), Cu(II), Mn(II), Ni(II) and Zn(II), followed by their determination via flow injection inductively coupled plasma optical emission spectrometry. The method is making use of the complexing agent 1-(2-thenoyl)-3,3,3-trifluoracetone, the ionic liquid 1-hexyl-3-methyl imidazolium bis(trifluoromethylsulfonyl)imide, and of ethanol as the dispersing solvent. After extraction and preconcentration, the sedimented ionic liquid (containing the target analytes) is collected, diluted with 1-propanol, and introduced to the ICP-OES. Effects of pH, ionic strength, ligand to metal molar ratio, volumes of extraction and disperser solvents on the performance of the microextraction were optimized in a half-fractional factorial design. The significant parameters were optimized using a face-centered central composite design. The method has detection limits between 0.10 and 0.20 ng mL−1 of the metal ions, preconcentration factors between 79 and 102, linear responses in 0.25 to 200 ng mL−1 concentration ranges, and relative standard deviations of 3.4 to 6.0%. The method was successfully applied to the analysis of drinking water, a fish farming pond water, and waste water from an industrial complex.

Ionic liquid based dispersive liquid-liquid microextraction of Co, Cu, Mn, Ni and Zn followed by determination via flow injection inductively coupled plasma optical emission spectrometry

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Hutchinson S, Kearney GA, Horne E, Lynch B, Glennon JD, Anthony McKervey M, Harris SJ (1994) Solid phase extraction of metal ions using immobilised chelating calixarene tetrahydroxamates. Anal Chim Acta 291(3):269–275

    Article  CAS  Google Scholar 

  2. Ramesh A, Devi BA, Hasegawa H, Maki T, Ueda K (2007) Nanometer-sized alumina coated with chromotropic acid as solid phase metal extractant from environmental samples and determination by inductively coupled plasma atomic emission spectrometry. Microchem J 86(1):124–130

    Article  CAS  Google Scholar 

  3. Narin I, Soylak M, Elçi L, Dogan M (2000) Determination of trace metal ions by AAS in natural water samples after preconcentration of pyrocatechol violet complexes on an activated carbon column. Talanta 52(6):1041–1046

    Article  CAS  Google Scholar 

  4. Leepipatpiboon V (1995) Trace enrichment by solid-phase extraction for the analysis of heavy metals in water. J Chromatogr A 697(1–2):137–143

    Article  CAS  Google Scholar 

  5. Kaur V, Aulakh JS, Malik AK (2007) A new approach for simultaneous determination of Co(II), Ni(II), Cu(II) and Pd(II) using 2-thiophenaldehyde-3-thiosemicarbazone as reagent by solid phase microextraction-high performance liquid chromatography. Anal Chim Acta 603(1):44–50

    Article  CAS  Google Scholar 

  6. Bulut VN, Gundogdu A, Duran C, Senturk HB, Soylak M, Elci L, Tufekci M (2007) A multi-element solid-phase extraction method for trace metals determination in environmental samples on Amberlite XAD-2000. J Hazard Mater 146(1–2):155–163

    Article  CAS  Google Scholar 

  7. López-García I, Viñas P, Romero-Romero R, Hernández-Córdoba M (2009) Ion-exchange preconcentration and determination of vanadium in milk samples by electrothermal atomic absorption spectrometry. Talanta 78(4–5):1458–1463

    Article  Google Scholar 

  8. Wang J, Hansen EH (2000) Coupling on-line preconcentration by ion-exchange with ETAAS: a novel flow injection approach based on the use of a renewable microcolumn as demonstrated for the determination of nickel in environmental and biological samples. Anal Chim Acta 424(2):223–232

    Article  CAS  Google Scholar 

  9. Yamini Y, Faraji M, Shariati S, Hassani R, Ghambarian M (2008) On-line metals preconcentration and simultaneous determination using cloud point extraction and inductively coupled plasma optical emission spectrometry in water samples. Anal Chim Acta 612:144–151

    CAS  Google Scholar 

  10. Farajzadeh MA, Fallahi MR (2006) Simultaneous cloud-point extraction of nine cations from water samples and their determination by flame atomic absorption spectrometry. Anal Sci 22(4):635–639

    Article  CAS  Google Scholar 

  11. Han D, Row K. Trends in liquid-phase microextraction, and its application to environmental and biological samples. Microchimica Acta, 1–22. doi:10.1007/s00604-011-0678-0

  12. Rezaee M, Assadi Y, Milani Hosseini MR, Aghaee E, Ahmadi F, Berijani S (2006) Determination of organic compounds in water using dispersive liquid-liquid microextraction. J Chromatogr A 1116(1–2):1–9

    Article  CAS  Google Scholar 

  13. Berijani S, Assadi Y, Anbia M, Milani Hosseini MR, Aghaee E (2006) Dispersive liquid-liquid microextraction combined with gas chromatography-flame photometric detection. Very simple, rapid and sensitive method for the determination of organophosphorus pesticides in water. J Chromatogr A 1123(1):1–9

    Article  CAS  Google Scholar 

  14. Farajzadeh MA, Bahram M, Jönsson JA (2007) Dispersive liquid-liquid microextraction followed by high-performance liquid chromatography-diode array detection as an efficient and sensitive technique for determination of antioxidants. Anal Chim Acta 591(1 SPEC. ISS):69–79

    Article  CAS  Google Scholar 

  15. Chang CC, Huang SD (2010) Determination of the steroid hormone levels in water samples by dispersive liquid-liquid microextraction with solidification of a floating organic drop followed by high-performance liquid chromatography. Anal Chim Acta 662(1):39–43

    Article  CAS  Google Scholar 

  16. Nagaraju D, Huang SD (2007) Determination of triazine herbicides in aqueous samples by dispersive liquid-liquid microextraction with gas chromatography-ion trap mass spectrometry. J Chromatogr A 1161(1–2):89–97

    Article  CAS  Google Scholar 

  17. Shokoufi N, Shemirani F, Assadi Y (2007) Fiber optic-linear array detection spectrophotometry in combination with dispersive liquid-liquid microextraction for simultaneous preconcentration and determination of palladium and cobalt. Anal Chim Acta 597(2):349–356

    Article  CAS  Google Scholar 

  18. Zeini Jahromi E, Bidari A, Assadi Y, Milani Hosseini MR, Jamali MR (2007) Dispersive liquid-liquid microextraction combined with graphite furnace atomic absorption spectrometry. Ultra trace determination of cadmium in water samples. Anal Chim Acta 585(2):305–311

    Article  CAS  Google Scholar 

  19. Mohammadi SZ, Afzali D, Baghelani YM (2009) Ligandless-dispersive liquid-liquid microextraction of trace amount of copper ions. Anal Chim Acta 653(2):173–177

    Article  CAS  Google Scholar 

  20. Farajzadeh MA, Bahram M, Vardast MR (2009) Optimization of dispersive liquid-liquid microextraction of Co(II) and Fe(III) as their oxinate chelates and analysis by HPLC: application for the simultaneous determination of Co(II) and Fe(III) in water samples. J Sep Sci 32(23–24):4200–4212

    Article  CAS  Google Scholar 

  21. Huddleston JG, Willauer HD, Swatloski RP, Visser AE, Rogers RD (1998) Room temperature ionic liquids as novel media for ‘clean’ liquid-liquid extraction. Chem Commun 16:1765–1766

    Article  Google Scholar 

  22. Liu JF, Jiang GB, Chi YG, Cai YQ, Zhou QX, Hu JT (2003) Use of ionic liquids for liquid-phase microextraction of polycyclic aromatic hydrocarbons. Anal Chem 75(21):5870–5876

    Article  CAS  Google Scholar 

  23. Liu J, Chi Y, Jiang G, Tai C, Peng J, Hu J (2004) Ionic liquid-based liquid-phase microextraction, a new sample enrichment procedure for liquid chromatography. J Chromatogr A 1026(1–2):143–147

    Article  CAS  Google Scholar 

  24. Andre M, Loidl J, Laus G, Schottenberger H, Bentivoglio G, Wurst K, Ongania KH (2005) Ionic liquids as advantageous solvents for headspace gas chromatography of compounds with low vapor pressure. Anal Chem 77(2):702–705

    Article  CAS  Google Scholar 

  25. Peng JF, Liu JF, Hu XL, Jiang GB (2007) Direct determination of chlorophenols in environmental water samples by hollow fiber supported ionic liquid membrane extraction coupled with high-performance liquid chromatography. J Chromatogr A 1139(2):165–170

    Article  CAS  Google Scholar 

  26. Aguilera-Herrador E, Lucena R, Cárdenas S, Valcárcel M (2008) Direct coupling of ionic liquid based single-drop microextraction and GC/MS. Anal Chem 80(3):793–800

    Article  CAS  Google Scholar 

  27. Basheer C, Alnedhary AA, Madhava Rao BS, Balasubramanian R, Lee HK (2008) Ionic liquid supported three-phase liquid-liquid-liquid microextraction as a sample preparation technique for aliphatic and aromatic hydrocarbons prior to gas chromatography–mass spectrometry. J Chromatogr A 1210(1):19–24

    Article  CAS  Google Scholar 

  28. Cruz-Vera M, Lucena R, Cárdenas S, Valcárcel M (2008) Ionic liquid-based dynamic liquid-phase microextraction: application to the determination of anti-inflammatory drugs in urine samples. J Chromatogr A 1202(1):1–7

    Article  CAS  Google Scholar 

  29. Zhou Q, Bai H, Xie G, Xiao J (2008) Trace determination of organophosphorus pesticides in environmental samples by temperature-controlled ionic liquid dispersive liquid-phase microextraction. J Chromatogr A 1188(2):148–153

    Article  CAS  Google Scholar 

  30. Liu Y, Zhao E, Zhu W, Gao H, Zhou Z (2009) Determination of four heterocyclic insecticides by ionic liquid dispersive liquid-liquid microextraction in water samples. J Chromatogr A 1216(6):885–891

    Article  CAS  Google Scholar 

  31. Mao T, Hao B, He J, Li W, Li S, Yu Z (2009) Ultrasound assisted ionic liquid dispersive liquid phase extraction of lovastatin and simvastatin: a new pretreatment procedure. J Sep Sci 32(17):3029–3033

    Article  CAS  Google Scholar 

  32. Tao Y, Liu JF, Hu XL, Li HC, Wang T, Jiang GB (2009) Hollow fiber supported ionic liquid membrane microextraction for determination of sulfonamides in environmental water samples by high-performance liquid chromatography. J Chromatogr A 1216(35):6259–6266

    Article  CAS  Google Scholar 

  33. Xia L, Li X, Wu Y, Hu B, Chen R (2008) Ionic liquids based single drop microextraction combined with electrothermal vaporization inductively coupled plasma mass spectrometry for determination of Co, Hg and Pb in biological and environmental samples. Spectrochim Acta Part B 63(11):1290–1296

    Article  Google Scholar 

  34. Li S, Cai S, Hu W, Chen H, Liu H (2009) Ionic liquid-based ultrasound-assisted dispersive liquid-liquid microextraction combined with electrothermal atomic absorption spectrometry for a sensitive determination of cadmium in water samples. Spectrochim Acta Part B 64(7):666–671

    Article  Google Scholar 

  35. Abdolmohammad-Zadeh H, Sadeghi GH (2010) Combination of ionic liquid-based dispersive liquid-liquid micro-extraction with stopped-flow spectrofluorometry for the pre-concentration and determination of aluminum in natural waters, fruit juice and food samples. Talanta 81(3):778–785

    Article  CAS  Google Scholar 

  36. Majidi B, Shemirani F. Salt-assisted liquid-liquid microextraction of Cr(VI) ion using an ionic liquid for preconcentration prior to its determination by flame atomic absorption spectrometry. Microchimica Acta, 1–9. doi:10.1007/s00604-011-0711-3

  37. Zeeb M, Sadeghi M (2011) Modified ionic liquid cold-induced aggregation dispersive liquid-liquid microextraction followed by atomic absorption spectrometry for trace determination of zinc in water and food samples. Microchimica Acta 175(1):159–165. doi:10.1007/s00604-011-0653-9

    Article  CAS  Google Scholar 

  38. Bai H, Zhou Q, Xie G, Xiao J (2010) Temperature-controlled ionic liquid-liquid-phase microextraction for the pre-concentration of lead from environmental samples prior to flame atomic absorption spectrometry. Talanta 80(5):1638–1642

    Article  CAS  Google Scholar 

  39. Yao C, Anderson JL (2009) Dispersive liquid-liquid microextraction using an in situ metathesis reaction to form an ionic liquid extraction phase for the preconcentration of aromatic compounds from water. Anal Bioanal Chem 395(5):1491–1502

    Article  CAS  Google Scholar 

  40. US-EPA Method 200.7, Determination of metals and trace elements in water and wastes by inductively coupled plasma-atomic emission spectrometry, Revision 4.4, 1994

  41. Saleh A, Yamini Y, Faraji M, Rezaee M, Ghambarian M (2009) Ultrasound-assisted emulsification microextraction method based on applying low density organic solvents followed by gas chromatography analysis for the determination of polycyclic aromatic hydrocarbons in water samples. J Chromatogr A 1216(39):6673–6679

    Article  CAS  Google Scholar 

  42. Leong MI, Huang SD (2009) Dispersive liquid-liquid microextraction method based on solidification of floating organic drop for extraction of organochlorine pesticides in water samples. J Chromatogr A 1216(45):7645–7650

    Article  CAS  Google Scholar 

  43. Saleh A (2006) MSc thesis: Extraction and measurement of total inorganic selenium in aqueous samples by on-line SPE ICP-AES, Tarbiat Modares University

  44. Cassol C, Umpierre A, Ebeling G, Ferrera B, Chiaro S, Dupont J (2007) On the extraction of aromatic compounds from hydrocarbons by imidazolium ionic liquids. Int J Mol Sci 8(7):593–605

    Article  CAS  Google Scholar 

  45. Kidani K, Hirayama N, Imura H (2008) Extraction behavior of divalent metal cations in ionic liquid chelate extraction systems using 1-alkyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imides and thenoyltrifluoroacetone. Anal Sci 24(10):1251–1254

    Article  CAS  Google Scholar 

  46. Gammelgaard B, Packert Jensen B (2007) Application of inductively coupled plasma mass spectrometry in drug metabolism studies. J Anal At Spectrom 22(3):235–249

    Article  CAS  Google Scholar 

  47. Faraji M, Yamini Y, Saleh A, Rezaee M, Ghambarian M, Hassani R (2010) A nanoparticle-based solid-phase extraction procedure followed by flow injection inductively coupled plasma-optical emission spectrometry to determine some heavy metal ions in water samples. Anal Chim Acta 659(1–2):172–177

    Article  CAS  Google Scholar 

  48. Baliza PX, Teixeira LSG, Lemos VA (2009) A procedure for determination of cobalt in water samples after dispersive liquid-liquid microextraction. Microchem J 93(2):220–224

    Article  CAS  Google Scholar 

  49. Jiang H, Qin Y, Hu B (2008) Dispersive liquid phase microextraction (DLPME) combined with graphite furnace atomic absorption spectrometry (GFAAS) for determination of trace Co and Ni in environmental water and rice samples. Talanta 74(5):1160–1165

    Article  CAS  Google Scholar 

  50. Xia L, Wu Y, Hu B (2007) Hollow-fiber liquid-phase microextraction prior to low-temperature electrothermal vaporization ICP-MS for trace element analysis in environmental and biological samples. J Mass Spectrom 42(6):803–810. doi:10.1002/jms.1216

    Article  CAS  Google Scholar 

  51. Farajzadeh MA, Bahram M, Mehr BG, Jönsson JÅ (2008) Optimization of dispersive liquid-liquid microextraction of copper (II) by atomic absorption spectrometry as its oxinate chelate: application to determination of copper in different water samples. Talanta 75(3):832–840

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yadollah Yamini.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 104 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ranjbar, L., Yamini, Y., Saleh, A. et al. Ionic liquid based dispersive liquid-liquid microextraction combined with ICP-OES for the determination of trace quantities of cobalt, copper, manganese, nickel and zinc in environmental water samples. Microchim Acta 177, 119–127 (2012). https://doi.org/10.1007/s00604-011-0757-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-011-0757-2

Keywords

  • Heavy metals
  • Ionic liquids
  • Dispersive liquid-liquid microextraction
  • Flow injection-inductively coupled plasma-optical emission spectrometry
  • Face-centered central composite design.