Skip to main content
Log in

Sensor for hydrogen peroxide using a hemoglobin-modified glassy carbon electrode prepared by enhanced loading of silver nanoparticle onto carbon nanospheres via spontaneous polymerization of dopamine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We have developed a simple and efficient method for the enhanced loading of silver nanoparticles onto carbon nanospheres, and how this method can be used to design an electrochemical sensor for hydrogen peroxide (HP). A glassy carbon electrode was modified with hemoglobin, carbon nanospheres, and by enhanced loading of silver nanoparticles onto the carbon nanospheres via spontaneous polymerization of dopamine. The hemoglobin exhibits a remarkable electrocatalytic activity for the reduction of HP. The electrochemical response to HP is linear range in the 1.0–147.0 μM concentration range, with a detection limit of 0.3 μM at a signal-to-noise ratio of 3.

A simple and efficient method has developed for enhanced loading of silver nanoparticles onto carbon nanospheres via polydopamine (AgNP-Pdop@CNPs). The direct chemistry of hemoglobin has been achieved at the AgNP-Pdop@CNPs modified glassy carbon electrode and the modified electrode exhibits a remarkable electrocatalytic activity for the reduction of hydrogen peroxide. The electrochemical response to H2O2 shows a linear range of 1.0–147.0 μM with a calculated detection limit of 0.3 μM at a signal-to-noise ratio of 3

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liu A (2008) Towards development of chemosensors and biosensors with metal-oxide-based nanowires or nanotubes. Biosens Bioelectron 24:167–177

    Article  CAS  Google Scholar 

  2. Cui RJ, Liu C, Shen JM, Gao D, Zhu JJ, Chen HY (2008) Gold nanoparticle–colloidal carbon nanosphere hybrid material: preparation, characterization, and application for an amplified electrochemical immunoassay. Adv Funct Mater 18:2197–2204

    Article  CAS  Google Scholar 

  3. Li F, Wang Z, Shan C, Song J, Han D, Niu L (2009) Preparation of gold nanoparticles/functionalized multiwalled carbon nanotube nanocomposites and its glucose biosensing application. Biosens Bioelectron 24:1765–1770

    Article  CAS  Google Scholar 

  4. Zhao HY, Zheng W, Meng ZX, Zhou HM, Xu XX, Li Z, Zheng YF (2009) Bioelectrochemistry of hemoglobin immobilized on a sodium alginate-multiwall carbon nanotubes composite film. Biosens Bioelectron 24:2352–2357

    Article  CAS  Google Scholar 

  5. Wooten M, Gorski W (2010) Facilitation of NADH electro-oxidation at treated carbon nanotubes. Anal Chem 82:1229–1304

    Article  Google Scholar 

  6. Zhang M, Gorski W (2005) Electrochemical sensing platform based on the carbon nanotubes/redox mediators-biopolymer system. J Am Chem Soc 127:2058–2059

    Article  CAS  Google Scholar 

  7. Zhu Z, Tang Z, Phillips JA, Yang R, Wang H, Tan W (2008) Regulation of singlet oxygen generation using single-walled carbon nanotubes. J Am Chem Soc 130:10856–10857

    Article  CAS  Google Scholar 

  8. Hao C, Ding L, Zhang X, Ju H (2007) Biocompatible conductive architecture of carbon nanofiber-doped chitosan prepared with controllable electrodeposition for cytosensing. Anal Chem 79:4442–4447

    Article  CAS  Google Scholar 

  9. Wang C, Zhang L, Guo Z, Xu J, Wang H, Zhai K, Zhuo X (2010) A novel hydrazine electrochemical sensor based on the high specific surface area graphene. Microchim Acta 169:1–6

    Article  CAS  Google Scholar 

  10. Wang Y, Peng W, Liu L, Tang M, Gao F, Li M (2011) Enhanced electrical conductivity of layered double hydroxide modified electrode by graphene for selectively sensing of dopamine. Microchim Acta 174:41–46

    Article  CAS  Google Scholar 

  11. Zhao F, Wang F, Zhao W, Zhou J, Liu Y, Zou L, Ye B (2011) Voltammetric sensor for caffeine based on a glassy carbon electrode modified with Nafion and graphene oxide. Microchim Acta 174:383–390

    Article  CAS  Google Scholar 

  12. Lu CH, Yang HH, Zhu CL, Chen X, Chen GN (2009) A graphene platform for sensing biomolecules. Angew Chem Int Ed 48:4785–4787

    Article  CAS  Google Scholar 

  13. Caruso F (2003) Hollow inorganic capsules via colloid-templated layer-by-layer electrostatic assembly. Top Curr Chem 227:145–168

    Article  CAS  Google Scholar 

  14. Liu CY, Hu JM (2009) Hydrogen peroxide biosensor based on the direct electrochemistry of myoglobin immobilized on silver nanoparticles doped carbon nanotubes film. Biosens Bioelectron 24:2149–2154

    Article  CAS  Google Scholar 

  15. Zhang H, Cui H (2009) Synthesis and characterization of functionalized ionic liquid-stabilized metal (gold and platinum) nanoparticles and metal nanoparticle/carbon nanotube hybrids. Langmuir 25:2604–2612

    Article  CAS  Google Scholar 

  16. Alam S, Anand C, Logudurai R, Balasubramanian VV, Ariga K, Bose AC, Mori T, Srinivasu P, Vinu A (2009) Comparative study on the magnetic properties of iron oxide nanoparticles loaded on mesoporous silica and carbon materials with different structure. Micropor Mesopor Mater 121:178–184

    Article  CAS  Google Scholar 

  17. Li QW, Sun BQ, Kinloch IA, Zhi D, Sirringhaus H, Windle AH (2006) Enhanced self-assembly of pyridine-capped CdSe nanocrystals on individual single-walled carbon nanotubes. Chem Mater 18:164–168

    Article  CAS  Google Scholar 

  18. Sun XM, Li YD (2004) Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew Chem Int Ed 43:597–601

    Article  Google Scholar 

  19. Lee H, Dellatore SM, Miller WM, Messersmith PB (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318:426–430

    Article  CAS  Google Scholar 

  20. Lee Y, Lee H, Kim YB, Kim J, Hyeon T, Park HW, Messersmith PB, Park TG (2008) Bioinspired surface immobilization of hyaluronic acid on monodisperse magnetite nanocrystals for targeted cancer imaging. Adv Mater 20:4154–4157

    CAS  Google Scholar 

  21. Xi ZY, Xu YY, Zhu LP, Wang Y, Zhu BK (2009) Facile method of surface modification for hydrophobic polymer membranes based on the adhesive behavior of poly(DOPA) and poly(dopamine). J Membr Sci 327:244–253

    Article  CAS  Google Scholar 

  22. Fei B, Qian B, Yang Z, Wang R, Liu WC, Mak CL, Xin JH (2008) Coating carbon nanotubes by spontaneous oxidative polymerization of dopamine. Carbon 46:1795–1797

    Article  CAS  Google Scholar 

  23. Perutz MF, Wilkinson AJ, Paoli M, Dodson GG (1998) The stereochemical mechanism of the cooperative effects in hemoglobin revisited. Annu Rev Biophys Biomol Struct 27:1–34

    Article  CAS  Google Scholar 

  24. Shan D, Wang S, Xue H, Cosnier S (2007) Direct electrochemistry and electrocatalysis of hemoglobin entrapped in composite matrix based on chitosan and CaCO3 nanoparticles. Electrochem Commun 9:529–534

    Article  CAS  Google Scholar 

  25. Yu J, Ju H (2003) Amperometric biosensor for hydrogen peroxide based on hemoglobin entrapped in titania sol–gel film. Anal Chim Acta 486:209–216

    Article  CAS  Google Scholar 

  26. Song J, Xu J, Zhao P, Lu L, Bao J (2011) A hydrogen peroxide biosensor based on direct electron transfer from hemoglobin to an electrode modified with Nafion and activated nanocarbon. Microchim Acta 172:117–123

    Article  CAS  Google Scholar 

  27. Xu J, Liu C, Wu Z (2011) Direct electrochemistry and enhanced electrocatalytic activity of hemoglobin entrapped in graphene and ZnO nanosphere composite film. Microchim Acta 172:425–430

    Article  CAS  Google Scholar 

  28. Pierpont CG, Lange CW (1994) The chemistry of transition metal complexes containing catechol and semiquinone ligands. Prog Inorg Chem 41:331–442

    Article  CAS  Google Scholar 

  29. Wang YL, Liu L, Li MG, Xu SD, Gao F (2011) Multifunctional carbon nanotubes for direct electrochemistry of glucose oxidase and glucose bioassay. Biosens Bioelectron 30:107–111

    Google Scholar 

  30. Postma A, Yan Y, Wang Y, Zelikin AN, Tjipto E, Caruso F (2009) Self-polymerization of dopamine as a versatile and robust technique to prepare polymer capsules. Chem Mater 21:3042–3044

    Article  CAS  Google Scholar 

  31. Ma G, Lu T, Xia Y (2007) Direct electrochemistry and bioelectrocatalysis of hemoglobin immobilized on carbon black. Bioelectrochemistry 71:180–185

    Article  CAS  Google Scholar 

  32. Guo F, Xu XX, Sun ZZ, Zhang JX, Meng ZX, Zheng W, Zhou HM, Wang BL, Zheng YF (2011) A novel amperometric hydrogen peroxide biosensor based on electrospun Hb–collagen composite. Colloids Surf B 86:140–145

    Article  CAS  Google Scholar 

  33. Xu XX, Zhang JX, Guo F, Zheng W, Zhou HM, Wang BL, Zheng YF, Wang YB, Cheng Y, Lou X, Jang BZ (2011) A novel amperometric hydrogen peroxide biosensor based on immobilized Hb in Pluronic P123-nanographene platelets composite. Colloids Surf B 84:427–432

    Article  CAS  Google Scholar 

  34. Wei N, Xin X, Du J, Li J (2011) A novel hydrogen peroxide biosensor based on the immobilization of hemoglobin on three-dimensionally ordered macroporous (3DOM) gold-nanoparticle-doped titanium dioxide (GTD) film. Biosens Bioelectron 26:3602–3607

    Article  CAS  Google Scholar 

  35. Luo L, Zhu L, Xu Y, Shen L, Wang X, Ding Y, Li Q, Deng D (2011) Hydrogen peroxide biosensor based on horseradish peroxidase immobilized on chitosan-wrapped NiFe2O4 nanoparticles. Microchim Acta 174:55–61

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Y. Wang and M. Li are grateful for financial support from the Natural Science Foundation of China (Grant Nos. 20801001 and 21075001) and Anhui Provincial Natural Science Foundation (Grant No. 11040606 M46). F. Gao thanks the Natural Science Foundation of China (Grant Nos. 21055001 and 21175002) for financial support. X. Lin thanks the Special Foundation for Young Scientists of Hefei Institutes of Physical Science (Chinese Academy of Sciences) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maoguo Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Tang, M., Lin, X. et al. Sensor for hydrogen peroxide using a hemoglobin-modified glassy carbon electrode prepared by enhanced loading of silver nanoparticle onto carbon nanospheres via spontaneous polymerization of dopamine. Microchim Acta 176, 405–410 (2012). https://doi.org/10.1007/s00604-011-0736-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-011-0736-7

Keywords

Navigation