Skip to main content

Advertisement

Log in

Rapid separation of four probiotic bacteria in mixed samples using microchip electrophoresis with laser-induced fluorescence detection

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Microchip electrophoresis (MCE) coupled to laser-induced fluorescence detection was applied to the rapid separation of Bifidobacterium, Lactobacillus casei, Lactobacillus acidophilus, and Enterococccus faecalis. All bacteria were quickly separated within 150 s using a running buffer of pH 8.5 containing Tris, borate, EDTA, and poly(ethylene oxide). The latter was crucial to reduce the bacterial adsorption on the walls of the microchannels. The pH of 8.5 warrants that bacteria carry a negative charge at their surface and thus display good electrophoretic performance. The method was used to analyze medical samples containing these probiotics, and the results showed that the identification and detection of bacteria by MCE is advantageous in terms of sample consumption, waste production, time of analysis, and instrumental effort.

Four probiotic bacteria was rapidly separated by microchip electrophoresis with laser-induced fluorescence detection

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lim O, Suntornsuk W, Suntornsuk L (2009) Capillary zone electrophoresis for enumeration of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus in yogurt. J Chromatogr B 877:710–718

    Article  CAS  Google Scholar 

  2. Kourkine IV, Ristick-Petrovic M, Davis E, Ruffolo CG, Kapsalis A, Barron AE (2003) Detection of Escherichia coli O157:H7 bacteria by a combination of immunofluorescent staining and capillary electrophoresis. Electrophoresis 24:655–661

    Article  CAS  Google Scholar 

  3. Steen HB (2000) Flow cytometry of bacteria: glimpses from the past with a view to the future. J Microbiol Methods 42:65–74

    Article  CAS  Google Scholar 

  4. Wang H, Zhang C, Xing D (2011) Simultaneous detection of Salmonella enterica, Escherichia coli O157:H7, and Listeria monocytogenes using oscillatory-flow multiplex PCR. Microchim Acta 173:503–512

    Article  CAS  Google Scholar 

  5. Stinson SC (1999) Identifying bacteria: looking for a fast track. Chem Eng News 77:36–38

    Google Scholar 

  6. Matz C, Boenigk J, Arndt H, Jürgens K (2002) Role of bacterial phenotypic traits in selective feeding of the heterotrophic nanoflagellate Spumella sp. Aquat Microb Ecol 27:137–148

    Article  Google Scholar 

  7. Jarman KH, Daly DS, Peterson CE, Saenz A, Valentine NB, Kingsley MT, Wahl KL (1999) Extracting and visualizing matrix-assisted laser desorption/ionization time of flight mass spectral fingerprints. Rapid Commun Mass Spectrom 13:1586–1594

    Article  CAS  Google Scholar 

  8. Jarman KH, Cebula ST, Saenz A, Peterson CE, Valentine NB, Kingsley MT, Wahl KL (2000) An algorithm for automated bacterial identification using matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 72:1217–1223

    Article  CAS  Google Scholar 

  9. Meuzelaar HLC, Kistemaker PG (1973) A technique for fast and reproducible fingerprinting of bacteria by pyrolysis mass spectrometry. Anal Chem 45:587–590

    Article  CAS  Google Scholar 

  10. Saenz A, Peterson CE, Valentine NB, Gantt SL, Jarman KH, Kingsley MT, Wahl KL (1999) Reproducibility of matrix-assisted laser desorption/ionization time of flight mass spectrometry for replicate bacterial culture analysis. Rapid Commun Mass Spectrom 13:1580–1585

    Article  CAS  Google Scholar 

  11. Belgrader P, Benett W, Hardley D, Richards J, Stratton P, Mariella RJ, Milanovich F (1999) Rapid determination of cell viability in single or mixed samples using capillary electrophoresis LIF microfluidic systems. Science 284:449–450

    Article  CAS  Google Scholar 

  12. Hjerten S (1977) In: Bloemendal H (ed) Cell Separation Methods. Elsevier, Amsterdam, pp 117–128

    Google Scholar 

  13. Schneiderheinze JM, Armstrong DW, Schulte G, Westenberg DJ (2000) Cell surface charge of lactobacilli and enterococci isolated from pig small intestine as studied by free zone electrophoresis: a methodological study. FEMS Microbiol Lett 189:39–44

    Article  CAS  Google Scholar 

  14. Szumski M, Kłodzińska E, Buszewski B (2009) Application of a fluorescence stereomicroscope as an in-line detection unit for electrophoretic separation of bacteria. Microchim Acta 164:287–291

    Article  CAS  Google Scholar 

  15. Rittgen J, Pütz M, Pyell U (2008) Identification of toxic oligopeptides in Amanita fungi employing capillary electrophoresis-electrospray ionization-mass spectrometry with positive and negative ion detection. Electrophoresis 9:2094–2100

    Article  Google Scholar 

  16. Pryce TM, Palladino S, Key ID, Coombs GW (2003) Rapid identification of fungi by sequencing the ITS1 and ITS2 regions using an automated capillary electrophoresis system. Med Mycol 41:369–381

    Article  CAS  Google Scholar 

  17. Kremser L, Bilek G, Blaas D, Kenndler E (2007) Capillary electrophoresis of viruses, subviral particles and virus complexes. J Sep Sci 30:1704–1713

    Article  CAS  Google Scholar 

  18. Victor P et al (2001) Detection of human immunodeficiency virus type 1 reverse transcriptase using aptamers as probes in affinity capillary electrophoresis. Anal Chem 73:6070–6076

    Article  Google Scholar 

  19. Figeys D, Pinto D (2000) Lab-on-a-chip: a revolution in biological and medical sciences. Anal Chem 71:330–335

    Google Scholar 

  20. Li YX, Li YQ, Zheng B, Qu LL, Li C (2009) Rapid identification of purified enteropathogenic Escherichia coli by microchip electrophoresis. Anal Chim Acta 643:100–107

    Article  CAS  Google Scholar 

  21. Shintani T, Torimura M, Sato H, Tao H, Manabe T (2005) Rapid separation of microorganisms by quartz microchip capillary electrophoresis. Anal Sci 21:57–60

    Article  CAS  Google Scholar 

  22. Law WS, Tay ETT, Feng HT, Yu LJ, Zhao JH, Li SFY (2007) Rapid identification of purified enteropathogenic Escherichia coli by microchip electrophoresis. J Sep Sci 30:1446–1452

    Article  CAS  Google Scholar 

  23. Garrett RH, Grisham CM (1999) Biochemistry, 2nd edn. Fort Worth Tex, pp 279–282

  24. Li G, Ge SL, Ni XF, Wang QJ, He PG, Fang YZ (2010) DNA separation by microchip electrophoresis using copolymers of Poly(vinylpyrrolidone) and hydroxyethylceiiulose. Chin J Chem 85:797–802

    Article  Google Scholar 

  25. Rodriguez MA, Lantz AW, Armstrong DW (2006) Capillary electrophoretic method for the detection of bacterial contamination. Anal Chem 78:4759–4767

    Article  CAS  Google Scholar 

  26. Yu LJ, Li SFY (2005) Electrophoretic behavior study of bacteria of pseudomonas aeruginosa, edwardsiella tarda and enteropathogenic escherichia coli by capillary electrophoresis with UV and fluorescence detection. Chromatographia 62:401–407

    Article  CAS  Google Scholar 

  27. Armstrong DW, Girod M, He LF, Rodriguez MA, Wei W, Zheng JJ, Yeung ES (2002) Mechanistic aspects in the generation of apparent ultrahigh efficiencies for colloidal (Microbial) electrokinetic separations. Anal Chem 74:5523–5530

    Article  CAS  Google Scholar 

  28. Yu LJ, Yuan LL, Feng HT, Li SFY (2004) Identification, and characterization of microorganisms by capillary electrophoresis. Electrophoresis 25:3139–3144

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the program for New Century Excellent Talents in University. We are grateful to Shanghai Spectrum Company for the assistance with the fabrication of the LIF detection.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuzhi Fang or Qingjiang Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, S., Wang, Z., Ge, S. et al. Rapid separation of four probiotic bacteria in mixed samples using microchip electrophoresis with laser-induced fluorescence detection. Microchim Acta 176, 295–301 (2012). https://doi.org/10.1007/s00604-011-0728-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-011-0728-7

Keywords

Navigation