Skip to main content
Log in

Novel phenyl-iminodiacetic acid grafted multiwalled carbon nanotubes for solid phase extraction of iron, copper and lead ions from aqueous medium

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We have covalently grafted phenyl-iminodiacetic acid groups onto multi-walled carbon nanotubes via a diazotation reaction. The resulting material was characterized by FT-IR and UV–vis spectroscopy, by TGA, XPS and SEM. It is shown to be a valuable solid-phase extraction adsorbent for the preconcentration of trace quantities of Fe(III), Cu(II) and Pb(II) ion from aqueous solution prior to their determination by ICP-OES. Various factors affectting the separation and preconcentration were investigated. The enrichment factor typically is 100. Under optimized experimental conditions, the maximum adsorption capacities for Fe(III), Cu(II) and Pb (II) are 64.5, 30.5 and 17.0 mg g-1, respectively, the detection limits are 0.26, 0.15 and 0.18 ng mL-1, and the relative standard deviations are <2.5% (n = 6). The new adsorbent shows superior reusability and stability. The procedure was successfully applied to the determination of trace quantities of Fe(III), Cu(II) and Pb (II) in water samples.

Multiwalled carbon nanotubes grafted with phenyl-iminodiacetic acid (PIDA-MWCNTs) is prepared and employed as solid phase extraction sorbent to determinate the trace Fe(III), Cu(II) and Pb (II) in water samples. The method has been applied to the preconcentration of trace amount of Fe(III), Cu(II) and Pb (II) in water samples with satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Thostenson ET, Ren ZF, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61(13):1899–1912

    Article  CAS  Google Scholar 

  2. Matisons JG, Trewartha S (2010) An overview of the thermal properties and applications of carbon nanotubes. J Polym Eng 30(5–7):277–308

    Google Scholar 

  3. Dervishi E, Li ZR, Xu Y, Saini V, Biris AR, Lupu D, Biris AS (2009) Carbon nanotubes: synthesis, properties, and applications. Particul Sci Technol 27(2):107–125. doi:10.1080/02726350902775962

    Article  CAS  Google Scholar 

  4. Valcarcel M, Cardenas S, Simonet BM (2007) Role of carbon nanotubes in analytical science. Anal Chem 79(13):4788–4797. doi:10.1021/Ac070196m

    Article  CAS  Google Scholar 

  5. Karousis N, Papi RM, Siskos A, Vakalopoulou P, Glezakos P, Sarigiannis Y, Stavropoulos G, Kyriakidis DA, Tagmatarchis N (2009) Peptidomimetic-functionalized carbon nanotubes with antitrypsin activity. Carbon 47(15):3550–3558. doi:10.1016/j.carbon.2009.08.025

    Article  CAS  Google Scholar 

  6. Viry L, Derre A, Garrigue P, Sojic N, Poulin P, Kuhn A (2007) Optimized carbon nanotube fiber microelectrodes as potential analytical tools. Anal Bioanal Chem 389(2):499–505. doi:10.1007/s00216-007-1467-9

    Article  CAS  Google Scholar 

  7. Hu ZJ, Cui Y, Liu S, Liu XH, Gao HW (2011) Solid-phase extraction of lead(II) ions using multiwalled carbon nanotubes grafted with tris(2-aminoethyl)amine. Microchim Acta 174(1–2):107–113. doi:10.1007/s00604-011-0601-8

    Google Scholar 

  8. Li SF, Guo YH, Sun WW, Sun DL, Yu XB (2010) Platinum nanoparticle functionalized CNTs as nanoscaffolds and catalysts to enhance the dehydrogenation of ammonia-borane. J Phys Chem C 114(49):21885–21890. doi:10.1021/Jp1091152

    Article  CAS  Google Scholar 

  9. Monajjemi M, Mahdavian L, Mollaamin F, Honarparvar B (2010) Thermodynamic investigation of enolketo tautomerism for alcohol sensors based on carbon nanotubes as chemical sensors. Fuller Nanotub Car N 18(1):45–55. doi:10.1080/15363830903291564

    Article  CAS  Google Scholar 

  10. Kong J, Franklin NR, Zhou CW, Chapline MG, Peng S, Cho KJ, Dai HJ (2000) Nanotube molecular wires as chemical sensors. Science 287(5453):622–625

    Article  CAS  Google Scholar 

  11. Wu W, Wieckowski S, Pastorin G, Benincasa M, Klumpp C, Briand JP, Gennaro R, Prato M, Bianco A (2005) Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. Angew Chem Int Edit 44(39):6358–6362. doi:10.1002/anie.200501613

    Article  CAS  Google Scholar 

  12. Pacheco PH, Smichowski P, Polla G, Martinez LD (2009) Solid phase extraction of Co ions using L-tyrosine immobilized on multiwall carbon nanotubes. Talanta 79(2):249–253. doi:10.1016/j.talanta.2009.03.050

    Article  CAS  Google Scholar 

  13. Liu Y, Li Y, Wu ZQ, Yan XP (2009) Fabrication and characterization of hexahistidine-tagged protein functionalized multi-walled carbon nanotubes for selective solid-phase extraction of Cu2+ and Ni2+. Talanta 79(5):1464–1471. doi:10.1016/j.talanta.2009.06.007

    Article  CAS  Google Scholar 

  14. Liu Y, Li Y, Yan XP (2008) Preparation, characterization, and application of L-cysteine functionalized multiwalled carbon nanotubes as a selective sorbent for separation and preconcentration of heavy metals. Adv Funct Mater 18(10):1536–1543. doi:10.1002/adfm.200701433

    Article  CAS  Google Scholar 

  15. Zang ZP, Hu Z, Li ZH, He Q, Chang XJ (2009) Synthesis, characterization and application of ethylenediamine-modified multiwalled carbon nanotubes for selective solid-phase extraction and preconcentration of metal ions. J Hazard Mater 172(2–3):958–963. doi:10.1016/j.jhazmat.2009.07.078

    Article  CAS  Google Scholar 

  16. El-Sheikh AH, Insisi AA, Sweileh JA (2007) Effect of oxidation and dimensions of multi-walled carbon nanotubes on solid phase extraction and enrichment of some pesticides from environmental waters prior to their simultaneous determination by high performance liquid chromatography. J Chromatogr A 1164(1–2):25–32. doi:10.1016/j.chroma.2007.07.009

    Article  CAS  Google Scholar 

  17. Ravelo-Perez LM, Herrera-Herrera AV, Hernandez-Borges J, Rodriguez-Delgado MA (2010) Carbon nanotubes: solid-phase extraction. J Chromatogr A 1217(16):2618–2641. doi:10.1016/j.chroma.2009.10.083

    Article  CAS  Google Scholar 

  18. Liang F, Sadana AK, Peera A, Chattopadhyay J, Gu ZN, Hauge RH, Billups WE (2004) A convenient route to functionalized carbon nanotubes. Nano Lett 4(7):1257–1260

    Article  CAS  Google Scholar 

  19. Yang Y, Qiu S, Xie X, Wang X, Li RKY (2010) A facile, green, and tunable method to functionalize carbon nanotubes with water-soluble azo initiators by one-step free radical addition. Appl Surf Sci 256(10):3286–3292. doi:10.1016/j.apsusc.2009.12.020

    Article  CAS  Google Scholar 

  20. Price BK, Hudson JL, Tour JM (2005) Green chemical functionalization of single-walled carbon nanotubes in ionic liquids. J Am Chem Soc 127(42):14867–14870. doi:10.1021/Ja053998c

    Article  CAS  Google Scholar 

  21. Doyle CD, Tour JM (2009) Environmentally friendly functionalization of single walled carbon nanotubes in molten urea. Carbon 47(14):3215–3218. doi:10.1016/j.carbon.2009.07.035

    Article  CAS  Google Scholar 

  22. Dyke CA, Tour JM (2003) Solvent-free functionalization of carbon nanotubes. J Am Chem Soc 125(5):1156–1157

    Article  CAS  Google Scholar 

  23. Yantasee W, Rutledge RD, Chouyyok W, Sukwarotwat V, Orr G, Warner CL, Warner MG, Fryxell GE, Wiacek RJ, Timchalk C, Addleman RS (2010) Functionalized nanoporous silica for the removal of heavy metals from biological systems: adsorption and application. Acs Appl Mater Inter 2(10):2749–2758. doi:10.1021/Am100616b

    Article  CAS  Google Scholar 

  24. Xu XQ, Deng CH, Gao MX, Yu WJ, Yang PY, Zhang XM (2006) Synthesis of magnetic microspheres with immobilized metal ions for enrichment and direct determination of phosphopeptides by matrix-assisted laser desorption ionization mass spectrometry. Adv Mater 18(24):3289–3293. doi:10.1002/adma.200601546

    Article  CAS  Google Scholar 

  25. Zhao X, Song N, Jia Q, Zhou W (2009) Determination of Cu, Zn, Mn, and Pb by microcolumn packed with multiwalled carbon nanotubes on-line coupled with flame atomic absorption spectrometry. Microchim Acta 166(3):329–335. doi:10.1007/s00604-009-0204-9

    Article  CAS  Google Scholar 

  26. Dyke CA, Tour JM (2004) Covalent functionalization of single-walled carbon nanotubes for materials applications. J Phys Chem A 108(51):11151–11159

    Article  CAS  Google Scholar 

  27. Ellison MD, Gasda PJ (2008) Functionalization of single-walled carbon nanotubes with 1,4-benzenediamine using a diazonium reaction. J Phys Chem C 112(3):738–740. doi:10.1021/Jp076935k

    Article  CAS  Google Scholar 

  28. Zhang ZH, Zhang HB, Hu YF, Yao SZ (2010) Synthesis and application of multi-walled carbon nanotubes-molecularly imprinted sol-gel composite material for on-line solid-phase extraction and high-performance liquid chromatography determination of trace Sudan IV. Anal Chim Acta 661(2):173–180. doi:10.1016/j.aca.2009.12.024

    Article  CAS  Google Scholar 

  29. Huang XP, Chang XJ, He Q, Cui YM, Zhai YH, Jiang N (2008) Tris(2-aminoethyl) amine functionalized silica gel for solid-phase extraction and preconcentration of Cr(III), Cd(II) and Pb(II) from waters. J Hazard Mater 157(1):154–160. doi:10.1016/j.jhazmat.2007.12.113

    Article  CAS  Google Scholar 

  30. Long GL, Winefordner JD (1983) Limit of detection. A closer look at the IUPAC definition. Anal Chem 55(7):712A–724A. doi:10.1021/ac00258a001

    Article  CAS  Google Scholar 

  31. Zhuqing W, Min W, Genhua W, Yuyong S, Chiyang H (2010) Ion imprinted sol-gel nanotubes membrane for selective separation of copper ion from aqueous solution. Microchim Acta 169(1–2):195–200. doi:10.1007/s00604-010-0332-2

    Article  Google Scholar 

  32. Ozcan SG, Satiroglu N, Soylak M (2010) Column solid phase extraction of iron(III), copper(II), manganese(II) and lead(II) ions food and water samples on multi-walled carbon nanotubes. Food Chem Toxicol 48(8–9):2401–2406. doi:10.1016/j.fct.2010.05.078

    CAS  Google Scholar 

  33. Tuzen M, Saygi KO, Soylak M (2008) Solid phase extraction of heavy metal ions in environmental samples on multiwalled carbon nanotubes. J Hazard Mater 152(2):632–639. doi:10.1016/j.jbazmat.2007.07.026

    Article  CAS  Google Scholar 

  34. Wang J, Ma X, Fang G, Pan M, Ye X, Wang S (2011) Preparation of iminodiacetic acid functionalized multi-walled carbon nanotubes and its application as sorbent for separation and preconcentration of heavy metal ions. J Hazard Mater 186(2–3):1985–1992. doi:10.1016/j.jhazmat.2010.12.087

    Article  CAS  Google Scholar 

  35. Li R, Chang X, Li Z, Zang Z, Hu Z, Li D, Tu Z (2011) Multiwalled carbon nanotubes modified with 2-aminobenzothiazole modified for uniquely selective solid-phase extraction and determination of Pb(II) ion in water samples. Microchim Acta 172(3):269–276. doi:10.1007/s00604-010-0488-9

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Key Technology R&D Program of China (No. 2008BAJ08B13), the National Natural Science Foundation of China (No. 21007046) and the China Postdoctoral Science Foundation (No. 20080440646) & Special Foundation (No. 201003279) for financially supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang-Jun Hu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Esm 1

(DOC 253 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cui, Y., Hu, ZJ., Yang, JX. et al. Novel phenyl-iminodiacetic acid grafted multiwalled carbon nanotubes for solid phase extraction of iron, copper and lead ions from aqueous medium. Microchim Acta 176, 359–366 (2012). https://doi.org/10.1007/s00604-011-0725-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-011-0725-x

Keywords

Navigation