Skip to main content
Log in

Analysis of trace amounts of chlorobenzenes in water samples: An approach towards the automation of dynamic hollow fiber liquid-phase microextraction

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We have combined dynamic hollow fiber liquid-phase microextraction with GC and electron capture detection for the quantitative determination of five chlorobenzenes in water samples. Extraction is based on an automated dynamic extraction device called TT-tube extractor which consists of a polypropylene hollow fiber mounted inside a stainless steel tube. Toluene is used as the extraction solvent that fills the lumen and pores of the hydrophobic fiber and flows through the lumen of the fiber using a programmable syringe pump. The type of organic solvent, ionic strength, diameter of the TT-tube, sample volume, and the times for extraction and dwelling were optimized. Under optimum conditions, the method gives limits of detection as low as 10–100 ng L−1, a linear dynamic range of 0.05–100 μg L−1, and relative standard deviations of <7% (n = 6). The preconcentration factor can be as large as 562–973. In an example for a practical application, the chlorobenzenes were successfully determined in environmental aqueous samples. The hollow fiber membrane can be used at least 20 times without any carry-over or loss in extraction efficiency. The system is inexpensive and convenient, and requires minimal manual handling.

Dynamic hollow fiber liquid phase microextraction apparatus

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sarrion MN, Santos FJ, Galceran MT (2000) Gas chromatography/ion trap tandem mass spectrometry for the analysis of halobenzenes in soils by solid-phase microextraction. Rapid Commun Mass Spectrom 14(23):2271–2281. doi:10.1002/1097-0231(20001215)14:23 <2271

    Article  CAS  Google Scholar 

  2. US Environmental Protection Agency (1986) Chlorinated benzenes; Final Test Rule. 40 CFR Part 799

  3. Khajeh M, Yamini Y, Hassan J (2006) Trace analysis of chlorobenzenes in water samples using headspace solvent microextraction and gas chromatography/electron capture detection. Talanta 69(5):1088–1094. doi:10.1016/j.talanta.2005.12.020

    Article  CAS  Google Scholar 

  4. Oliver BG, Bothen KD (1980) Determination of chlorobenzenes in water by capillary gas chromatography. Anal Chem 52(13):2066–2069. doi:10.1021/ac50063a017

    Article  CAS  Google Scholar 

  5. Melcher RG, Morabito PL (1990) Membrane/gas chromatographic system for automated extraction and determination of trace organics in aqueous samples. Anal Chem 62(20):2183–2188. doi:10.1021/ac00219a006

    Article  CAS  Google Scholar 

  6. Wang Y, Lee HK (1998) Determination of chlorobenzenes in water by solid-phase extraction and gas chromatography–mass spectrometry. J Chromatogr A 803(1–2):219–225. doi:10.1016/S0021-9673(97)01252-1

    CAS  Google Scholar 

  7. Barro R, Ares S, Garcia-Jares C, Llompart M, Cela R (2004) Development of a sensitive methodology for the analysis of chlorobenzenes in air by combination of solid-phase extraction and headspace solid-phase microextraction. J Chromatogr A 1045(1–2):189–196. doi:10.1016/j.chroma.2004.06.033

    Article  CAS  Google Scholar 

  8. Liu G, Wang J, Zhu Y, Zhang X (2004) Application of multiwalled carbon nanotubes as a solid-phase extraction sorbent for chlorobenzenes. Anal Lett 37(14):3085–3104. doi:10.1081/AL-200035912

    Article  CAS  Google Scholar 

  9. Giardina M, Ding LH, Olesik SV (2004) Development of fluorinated low temperature glassy carbon films for solid-phase microextraction. J Chromatogr A 1060(1–2):215–224. doi:10.1016/j.chroma.2004.04.018

    Article  CAS  Google Scholar 

  10. Leslie HA, Hermens JLM, Kraak MHS (2004) Baseline toxicity of a chlorobenzene mixture and total body residues measured and estimated with solid-phase microextraction. Environ Toxicol Chem 23(8):2017–2021. doi:10.1897/03-386

    Article  CAS  Google Scholar 

  11. Paschke A, Popp P (2004) Diffusion-based calibration for solid-phase microextraction of benzene, toluene, ethylbenzene, p-xylene and chlorobenzenes from aqueous samples. J Chromatogr A 1025(1):11–16. doi:10.1016/j.chroma.2003.08.059

    Article  CAS  Google Scholar 

  12. Tor A (2006) Determination of chlorobenzenes in water by drop-based liquid-phase microextraction and gas chromatography-electron capture detection. J Chromatogr A 1125(1):129–132. doi:10.1016/j.chroma.2006.06.081

    Article  CAS  Google Scholar 

  13. Vidal L, Canals A, Kalogerakis N, Psillakis E (2005) Headspace single-drop microextraction for the analysis of chlorobenzenes in water samples. J Chromatogr A 1089(1):25–30. doi:10.1016/j.chroma.2005.06.058

    Article  CAS  Google Scholar 

  14. Shen G, Lee HK (2003) Headspace liquid-phase microextraction of chlorobenzenes in soil with gas chromatography-electron capture detection. Anal Chem 75(1):98–103. doi:10.1021/ac020428b

    Article  CAS  Google Scholar 

  15. Rahnama Kozani R, Assadi Y, Shemirani F, Milani Hosseini MR, Jamali MR (2007) Part-per-trillion determination of chlorobenzenes in water using dispersive liquid–liquid microextraction combined gas chromatography–electron capture detection. Talanta 72(2):387–393. doi:10.1016/j.talanta.2006.10.039

    Article  Google Scholar 

  16. Jönsson JA, Mathiasson L (1999) Liquid membrane extraction in analytical sample preparation: II. Applications. Trends Anal Chem 18(5):318–325. doi:10.1016/S0165-9936(99)00103-X

    Article  Google Scholar 

  17. Pedersen-Bjergaard S, Rasmussen KE (2005) Bioanalysis of drugs by liquid-phase microextraction coupled to separation techniques. J Chromatogr B 817(1):3–12. doi:10.1016/j.jchromb.2004.08.034

    Article  CAS  Google Scholar 

  18. Zhao L, Lee HK (2002) Liquid-phase microextraction combined with hollow fiber as a sample preparation technique prior to gas chromatography/mass spectrometry. Anal Chem 74(11):2486–2492. doi:10.1021/ac011124c

    Article  CAS  Google Scholar 

  19. Rasmussen KE, Pedersen-Bjergaard S (2004) Developments in hollow fibre-based, liquid-phase microextraction. Trends Anal Chem 23(1):1–10. doi:10.1016/S0165-9936(04)00105-0

    Article  CAS  Google Scholar 

  20. Basheer C, Lee HK, Obbard JP (2004) Application of liquid-phase microextraction and gas chromatography–mass spectrometry for the determination of polychlorinated biphenyls in blood plasma. J Chromatogr A 1022(1–2):161–169. doi:10.1016/j.chroma.2003.09.043

    Article  CAS  Google Scholar 

  21. Hou L, Shen G, Lee HK (2003) Automated hollow fiber-protected dynamic liquid-phase microextraction of pesticides for gas chromatography–mass spectrometric analysis. J Chromatogr A 985(1–2):107–116. doi:10.1016/S0021-9673(02)01827-7

    Article  CAS  Google Scholar 

  22. Esrafili A, Yamini Y, Ghambarian M, Moradi M (2011) Dynamic three-phase hollow fiber microextraction based on two immiscible organic solvents with automated movement of the acceptor phase. J Sep Sci 34(1):98–106. doi:10.1002/jssc.201000624

    Article  CAS  Google Scholar 

  23. Pezo D, Salafranca J, Nerín C (2007) Development of an automatic multiple dynamic hollow fibre liquid-phase microextraction procedure for specific migration analysis of new active food packagings containing essential oils. J Chromatogr A 1174(1):85–94. doi:10.1016/j.chroma.2007.08.033

    Article  CAS  Google Scholar 

  24. Jiang X, Oh SY, Lee HK (2005) Dynamic liquid−liquid−liquid microextraction with automated movement of the acceptor phase. Anal Chem 77(6):1689–1695. doi:10.1021/ac040153v

    Article  CAS  Google Scholar 

  25. Esrafili A, Yamini Y, Ghambarian M, Moradi M, Seidi S (2011) A novel approach to automation of dynamic hollow fiber liquid-phase microextraction. J Sep Sci 34(8):957–964. doi:10.1002/jssc.201000913

    Article  CAS  Google Scholar 

  26. Wu J, Ee KH, Lee HK (2005) Automated dynamic liquid–liquid–liquid microextraction followed by high-performance liquid chromatography-ultraviolet detection for the determination of phenoxy acid herbicides in environmental waters. J Chromatogr A 1082(2):121–127. doi:10.1016/j.chroma.2005.05.077

    Article  CAS  Google Scholar 

  27. Jonsson OB, Nordlöf U, Nilsson UL (2003) The XT-tube Extractor: a hollow fiber-based supported liquid membrane extractor for bioanalytical sample preparation. Anal Chem 75(14):3506–3511. doi:10.1021/ac034218q

    Article  CAS  Google Scholar 

  28. Zhao F, Lu S, Du W, Zeng B (2009) Ionic liquid-based headspace single-drop microextraction coupled to gas chromatography for the determination of chlorobenzene derivatives. Microchim Acta 165(1–2):29–33. doi:1007/s00604-008-0092-4

    Article  CAS  Google Scholar 

  29. Chisvert A, Román IP, Vidal L, Canals A (2009) Simple and commercial readily-available approach for the direct use of ionic liquid-based single-drop microextraction prior to gas chromatography: Determination of chlorobenzenes in real water samples as model analytical application. J Chromatogr A 1216(9):1290–1295. doi:10.1016/j.chroma.2008.12.078

    Article  CAS  Google Scholar 

  30. Kamarei F, Ebrahimzadeh H, Yamini Y (2010) Optimization of temperature-controlled ionic liquid dispersive liquid phase microextraction combined with high performance liquid chromatography for analysis of chlorobenzenes in water samples. Talanta 83(1):36–41. doi::10.1016/j.talanta.2010.08.03

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yadollah Yamini.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 430 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esrafili, A., Yamini, Y., Ghambarian, M. et al. Analysis of trace amounts of chlorobenzenes in water samples: An approach towards the automation of dynamic hollow fiber liquid-phase microextraction. Microchim Acta 176, 367–374 (2012). https://doi.org/10.1007/s00604-011-0720-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-011-0720-2

Keywords

Navigation