Skip to main content
Log in

Determination of nimesulide in human serum using a glassy carbon electrode modified with SiC nanoparticles

  • Short Communication
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A glassy carbon electrode (GCE) was modified with silicon carbide nanoparticles and used to investigate the electrochemistry of the drug nimesulide via voltammetry and chronoamperometry. The structure of the modified electrode was studied by field emission scanning electron microscopy. Nimesulide undergoes electroreduction at pH 2 at a potential that is shifted from −526 mV (at the bare GCE) to −387 mV at the modified electrode. Simultaneously, sensitivity is increased by a factor of 5.8. The charge transfer coefficient, diffusion coefficient, standard heterogeneous rate constant and catalytic reaction rate constant were determined. A plot potential vs. pH revealed a voltammetric pKa value of about 6.5–7.0. The differential pulse voltammetric calibration plot for nimesulide is linear in 0.09–8.7 μM concentration range, and the detection limit and sensitivity are 30 nM and 512 nA.μM−1, respectively. The modified electrode was applied to the determination of nimesulide in acidic solution and human blood serum samples without further pretreatment. The recoveries, as determined by the standard addition method, range from 95.7 to 98.7%, with an RSD of around 1.6%.

(A) CVs of SiC-NPs/GC modified electrode at scan rate 0.1 V.s-1 in pH 2.0 PBS solutions in the absence (c) and the presence of 8.0 μM nimesulide (d). (a) and (b) as (c) and (d), respectively at bare GC electrode. (B) DPVs at voltage step 0.008 V, sweep rate 0.02 V.s−1 and pulse amplitude 0.05 V in pH 2.0 PBS solutions in the absence (c) and the presence of 8.0 μM nimesulide (d). (a) and (b) as (c) and (d) respectively at bare GC electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Garcia-Cabanes C, Palmero M, Bellot JL, Castello M, Orts A (2001) Inhibition of COX in ocular tissues: an in vitro model to identify selective COX-2 inhibitors. J Ocul Pharmacol Ther 17:67–74. doi:10.1089/108076801750125711

    Article  CAS  Google Scholar 

  2. Rainsford KD (2005) In: Nimesulide-Actions and uses, Birkhäuser Verlag, Basel-Boston Berlin, 1–47

  3. Singla AK, Chawla M, Singh A (2000) Review Nimesulide: some pharmaceutical and pharmacological aspects-an update. J Pharm Pharmacol 52:467–486. doi:10.1211/0022357001774255

    Article  CAS  Google Scholar 

  4. (2004) British Pharmacopoeia, Vol. II, Nimesulide. The stationery office. London, 1378 1379

  5. Singh S, Sharda N, Mahajan L (1999) Spectrophotometric determination of pKa of nimesulide. Int J Pharm 176:261–264. doi:10.1016/s0378-5173(98)00304-4

    Article  CAS  Google Scholar 

  6. Dellis D, Giaginis C, Tsantili-Kakoulidou A (2007) Physicochemical profile of nimesulide, exploring the interplay of lipophilicity, solubility and ionization. J Pharm Biomed Anal 44:57–62. doi:10.1016/j.jpba.2007.01.035

    Article  CAS  Google Scholar 

  7. Singh A, Singh P, Kapoor VK (2001) In: Analytical profiles of drug substances and excipients, vol. 28, Part nimesulide. Academic press, New Jersey, 198–249

  8. Starek M, Krzek J (2009) A review of analytical techniques for determination of oxicams, nimesulide and nabumetone. Talanta 77:925–942. doi:10.1016/j.talanta.2008.09.022

    Article  CAS  Google Scholar 

  9. Lakshmi CSR, Reddy MN, Naidu PY (1998) Fluorimetric determination of nimesulide with N-(l-naphthyl) ethylene. Indian Drugs 35:519–520

    CAS  Google Scholar 

  10. Lakshmi CSR, Reddy MN (1999) Spectrophotometric. Estimation of nimesulide and its formulations. Microchim Acta 132:1–6. doi:10.1007/pl00010067

    Article  CAS  Google Scholar 

  11. Nagaraja P, Yathirajan HS, Arunkumar HR, Vasantha RA (2002) New coupling reagents for the sensitive spectrophotometric determination of nimesulide in pharmaceutical preparations. J Pharm Biomed Anal 29:277–282. doi:10.1016/S0731-7085(02)00060-2

    Article  CAS  Google Scholar 

  12. Perju AC, Mandrescu M, Spac AF, Dorneanu V (2007) Nimesulide spectrophotometric determination in visible. Rev Med Chir Soc Med Nat Iasi 111:535–539

    Google Scholar 

  13. Jaworowicz DJ, Filipowski MT, Boje KMK (1999) Improved high-performance liquid chromatographic assay for nimesulide. J Chromatogr B 723:293–299. doi:10.1016/s0378-4347(98)00559-3

    Article  CAS  Google Scholar 

  14. Panusa A, Multari G, Incarnato G, Gagliardi L (2007) High-performance liquid chromatography analysis of anti-inflammatory pharmaceuticals with ultraviolet and electrospray-mass spectrometry detection in suspected counterfeit homeopathic medicinal products. J Pharm Biomed Anal 43:1221–1227. doi:10.1016/j.jpba.2006.10.012

    Article  CAS  Google Scholar 

  15. Battu PR (2009) Determination of nimesulide in pharmaceutical formulations and in human serum by reverse-phase high-performance liquid chromatography. Int J Pharm Tech Res 1:206–209

    Google Scholar 

  16. Ferrario P, Bianchi M (2003) Simultaneous determination of nimesulide and hydroxynimesulide in rat plasma, cerebrospinal fluid and brain by liquid chromatography using solid-phase extraction. J Chromatogr B 785:227–236. doi:10.1016/S1570-0232(02)00857-7

    Article  CAS  Google Scholar 

  17. Syed AA, Amshumali MK, Devan N (2002) Chromatographic methods for determination of nimesulide and for stability studies. Acta Chromatographia 12:95–103

    CAS  Google Scholar 

  18. Zacharis CK, Tzanavaras PD, Notou M, Zotou A, Themelis DG (2009) Separation and determination of nimesulide related substances for quality control purposes by micellar electrokinetic chromatography. J Pharm Biomed Anal 49:201–206. doi:10.1016/j.jpba.2008.10.023

    Article  CAS  Google Scholar 

  19. Macia A, Borrull F, Calull M, Aguilar C (2007) Capillary electrophoresis for the analysis of non-steroidal anti-inflammatory drugs. Trends Anal Chem 26:133–153. doi:10.1016/j.trac.2006.11.011

    Article  CAS  Google Scholar 

  20. Furlanetto S, Orlandini S, Aldini G, Gotti R, Dreassi E, Pinzauti S (2000) Designing experiments to optimise and validate the adsorptive stripping voltammetric determination of nimesulide. Anal Chim Acta 413:229–239. doi:10.1016/S0003-2670(00)00735-2

    Article  CAS  Google Scholar 

  21. Wang C, Shao X, Liu Q, Qu Q, Yang G, Hu X (2006) Differential pulse voltammetric determination of nimesulide in pharmaceutical formulation and human serum at glassy carbon electrode modified by cysteic acid/CNTs based on electrochemical oxidation of l-cysteine. J Pharm Biomed Anal 42:237–244. doi:10.1016/j.jpba.2006.03.038

    Article  CAS  Google Scholar 

  22. Alvarez-Lueje A, Vasquez P, Núñez-Vergara LJ, Squella JA (1997) Voltammetric study of nimesulide and its differential pulse polarographic determination in pharmaceuticals. Electroanalysis 9:1209–1213. doi:10.1002/elan.1140091517

    Article  CAS  Google Scholar 

  23. Catarino RIL, Conceição ACL, Garcia MBQ, Gonçalves MLS, Lima JLFC, Santos MMC (2003) Flow amperometric determination of pharmaceuticals with on-line electrode surface renewal. J Pharm Biomed Anal 33:571–580. doi:10.1016/S0731-7085(03)00318-2

    Article  CAS  Google Scholar 

  24. Wang F, Hu S (2009) Electrochemical sensors based on metal and semiconductor nanoparticles. Microchim Acta 165:1–22. doi:10.1007/s00604-009-0136-4

    Article  CAS  Google Scholar 

  25. Ghavami R, Salimi A, Navaee A (2011) SiC nanoparticles-modified glassy carbon electrodes for simultaneous determination of purine and pyrimidine DNA bases. Biosens Bioelectron 26:3864–3869. doi:10.1016/j.bios.2011.02.048

    Article  CAS  Google Scholar 

  26. Tocher JH (1997) Reductive activation of nitroheterocyclic compounds. Gen Pharmacol Vasc Syst 28:485–487. doi:10.1016/S0306-3623(96)00283-2

    Article  CAS  Google Scholar 

  27. Squella JA, Gonzales P, Bollo S, Nunez-Vergara LJ (1999) Electrochemical Generation and Interaction Study of the Nitro Radical Anion from Nimesulide. Pharm Res 16:161–164. doi:10.1023/A:1011950218824

    Article  CAS  Google Scholar 

  28. Lund H, Hammerich O (2001) In: Organic electrochemistry, 4th ed. New York, Marcel Dekker

  29. de Abreua FC, de Ferraza PAL, Goularta MOF (2002) Some applications of electrochemistry in biomedical chemistry. Emphasis on the correlation of electrochemical and bioactive properties. J Braz Chem Soc 13:19–35. doi:10.1590/S0103-50532002000100004

    Article  Google Scholar 

  30. Galus Z (1994) In: Fundamentals of electrochemical analysis. Ellis Horwood Press, New York, 398

  31. Zhang J, Tan X, Zhao D, Tan S, Huang Z, Mi Y, Huang Z (2010) Study of nimesulide and its determination using multiwalled carbon nanotubes modified glassy carbon electrodes. Electrochim Acta 55:2522–2526. doi:10.1016/j.electacta.2009.12.019

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raouf Ghavami.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 252 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghavami, R., Navaee, A. Determination of nimesulide in human serum using a glassy carbon electrode modified with SiC nanoparticles. Microchim Acta 176, 493–499 (2012). https://doi.org/10.1007/s00604-011-0710-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-011-0710-4

Keywords

Navigation