Microchimica Acta

, Volume 176, Issue 3–4, pp 251–269 | Cite as

Particles and microfluidics merged: perspectives of highly sensitive diagnostic detection

  • Tania KonryEmail author
  • Shyam Sundhar Bale
  • Abhinav Bhushan
  • Keyue Shen
  • Erkin Seker
  • Boris Polyak
  • Martin YarmushEmail author
Review Article


There is a growing need for diagnostic technologies that provide laboratories with solutions that improve quality, enhance laboratory system productivity, and provide accurate detection of a broad range of infectious diseases and cancers. Recent advances in micro- and nanoscience and engineering, in particular in the areas of particles and microfluidic technologies, have advanced the “lab-on-a-chip” concept towards the development of a new generation of point-of-care diagnostic devices that could significantly enhance test sensitivity and speed. In this review, we will discuss many of the recent advances in microfluidics and particle technologies with an eye towards merging these two technologies for application in medical diagnostics. Although the potential diagnostic applications are virtually unlimited, the most important applications are foreseen in the areas of biomarker research, cancer diagnosis, and detection of infectious microorganisms.


There is a growing need for diagnostic technologies that provide laboratories with solutions that improve quality, enhance laboratory system productivity, and provide accurate detection of a broad range of infectious diseases and cancers. In this review, we will discuss many of the recent advances in microfluidics and particle technologies with an eye towards merging these two technologies for application in medical diagnostics such as microfluidic device to monitor molecular secretions in real-time as demonstrated in this figure.


Diagnostic detection Particle technologies Microfluidic Biomarker research Cancer diagnosis Detection of infectious microorganisms Bead based diagnostics 


  1. 1.
    Manz A, Graber N, Widmer HM (1990) Miniaturized total chemical analysis systems: A novel concept for chemical sensing. Sensors and Actuators B: Chemical 1(1–6):244–248. doi: 10.1016/0925-4005(90)80209-i CrossRefGoogle Scholar
  2. 2.
    Craighead H (2006) Future lab-on-a-chip technologies for interrogating individual molecules. Nature 442(7101):387–393. doi: 10.1038/nature05061 CrossRefGoogle Scholar
  3. 3.
    Gao J, Yin XF, Fang ZL (2004) Integration of single cell injection, cell lysis, separation and detection of intracellular constituents on a microfluidic chip. Lab Chip 4(1):47–52. doi: 10.1039/b310552k CrossRefGoogle Scholar
  4. 4.
    Beebe DJ, Mensing GA, Walker GM (2002) Physics and applications of microfluidics in biology. Annu Rev Biomed Eng 4:261–286. doi: 10.1146/annurev.bioeng.4.112601.125916 CrossRefGoogle Scholar
  5. 5.
    Chovan T, Guttman A (2002) Microfabricated devices in biotechnology and biochemical processing. Trends Biotechnol 20(3):116–122. doi: S0167779902019054[pii] CrossRefGoogle Scholar
  6. 6.
    Jakeway SC, de Mello AJ, Russell EL (2000) Miniaturized total analysis systems for biological analysis. Fresenius J Anal Chem 366(6–7):525–539CrossRefGoogle Scholar
  7. 7.
    DeMello AJ (2006) Control and detection of chemical reactions in microfluidic systems. Nature 442(7101):394–402. doi: 10.1038/nature05062 CrossRefGoogle Scholar
  8. 8.
    Janasek D, Franzke J, Manz A (2006) Scaling and the design of miniaturized chemical-analysis systems. Nature 442(7101):374–380. doi: 10.1038/nature05059 CrossRefGoogle Scholar
  9. 9.
    Bange A, Halsall HB, Heineman WR (2005) Microfluidic immunosensor systems. Biosens Bioelectron 20(12):2488–2503. doi: 10.1016/j.bios.2004.10.016 CrossRefGoogle Scholar
  10. 10.
    Hansen C, Quake SR (2003) Microfluidics in structural biology: smaller, faster em leader better. Curr Opin Struct Biol 13(5):538–544. doi: S0959440X0300143X[pii] CrossRefGoogle Scholar
  11. 11.
    Lion N, Reymond F, Girault HH, Rossier JS (2004) Why the move to microfluidics for protein analysis? Curr Opin Biotechnol 15(1):31–37. doi: 10.1016/j.copbio.2004.01.001 CrossRefGoogle Scholar
  12. 12.
    Tudos AJ, Besselink GJ, Schasfoort RB (2001) Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry. Lab Chip 1(2):83–95. doi: 10.1039/b106958f CrossRefGoogle Scholar
  13. 13.
    Holland CA, Kiechle FL (2005) Point-of-care molecular diagnostic systems–past, present and future. Curr Opin Microbiol 8(5):504–509. doi: 10.1016/j.mib.2005.08.001 CrossRefGoogle Scholar
  14. 14.
    Verpoorte E (2002) Microfluidic chips for clinical and forensic analysis. Electrophoresis 23(5):677–712. doi: 10.1002/1522-2683(200203)23:5<677::AID-ELPS677>3.0.CO;2-8 CrossRefGoogle Scholar
  15. 15.
    Huang Y, Mather EL, Bell JL, Madou M (2002) MEMS-based sample preparation for molecular diagnostics. Anal Bioanal Chem 372(1):49–65. doi: 10.1007/s00216-001-1191-9 CrossRefGoogle Scholar
  16. 16.
    Vo-Dinh T, Cullum B (2000) Biosensors and biochips: advances in biological and medical diagnostics. Fresenius J Anal Chem 366(6–7):540–551CrossRefGoogle Scholar
  17. 17.
    Dupuy AM, Lehmann S, Cristol JP (2005) Protein biochip systems for the clinical laboratory. Clin Chem Lab Med 43(12):1291–1302. doi: 10.1515/CCLM.2005.223 CrossRefGoogle Scholar
  18. 18.
    Walt DR (2005) Chemistry. Miniature analytical methods for medical diagnostics. Science 308(5719):217–219. doi: 10.1126/science.1108161 CrossRefGoogle Scholar
  19. 19.
    Dittrich PS, Manz A (2006) Lab-on-a-chip: microfluidics in drug discovery. Nat Rev Drug Discov 5(3):210–218. doi: 10.1038/nrd1985 CrossRefGoogle Scholar
  20. 20.
    Jain KK (2005) Nanotechnology-based lab-on-a-chip devices. In: Encyclopedia of diagnostic genomics and proteomics, vol 2. Marcel Dekkar Inc., New York, pp. 891–895.Google Scholar
  21. 21.
    Hsu HY, Joos TO, Koga H (2009) Multiplex microsphere-based flow cytometric platforms for protein analysis and their application in clinical proteomics—from assays to results. Electrophoresis 30(23):4008–4019. doi: 10.1002/elps.200900211 CrossRefGoogle Scholar
  22. 22.
    Derveaux S, Stubbe BG, Braeckmans K, Roelant C, Sato K, Demeester J, De Smedt SC (2008) Synergism between particle-based multiplexing and microfluidics technologies may bring diagnostics closer to the patient. Anal Bioanal Chem 391(7):2453–2467. doi: 10.1007/s00216-008-2062-4 CrossRefGoogle Scholar
  23. 23.
    Oita I, Halewyck H, Thys B, Rombaut B, Vander Heyden Y, Mangelings D (2010) Microfluidics in macro-biomolecules analysis: macro inside in a nano world. Anal Bioanal Chem 398(1):239–264. doi: 10.1007/s00216-010-3857-7 CrossRefGoogle Scholar
  24. 24.
    Braeckmans K, De Smedt SC, Leblans M, Pauwels R, Demeester J (2002) Encoding microcarriers: present and future technologies. Nat Rev Drug Discov 1(6):447–456. doi: 10.1038/nrd817 CrossRefGoogle Scholar
  25. 25.
    Yingyongnarongkul BE, How SE, Diaz-Mochon JJ, Muzerelle M, Bradley M (2003) Parallel and multiplexed bead-based assays and encoding strategies. Comb Chem High Throughput Screen 6(7):577–587Google Scholar
  26. 26.
    Venkatasubbarao S (2004) Microarrays–status and prospects. Trends Biotechnol 22(12):630–637. doi: 10.1016/j.tibtech.2004.10.008 CrossRefGoogle Scholar
  27. 27.
    Wilson R, Cossins AR, Spiller DG (2006) Encoded microcarriers for high-throughput multiplexed detection. Angew Chem Int Ed Engl 45(37):6104–6117. doi: 10.1002/anie.200600288 CrossRefGoogle Scholar
  28. 28.
    Song H, Chen DL, Ismagilov RF (2006) Reactions in droplets in microfluidic channels. Angew Chem Int Ed Engl 45(44):7336–7356. doi: 10.1002/anie.200601554 CrossRefGoogle Scholar
  29. 29.
    Lawrie GA, Robinson J, Corrie S, Ford K, Battersby BJ, Trau M (2006) Multiplexed microsphere diagnostic tools in gene expression applications: factors and futures. Int J Nanomedicine 1(2):195–201CrossRefGoogle Scholar
  30. 30.
    Holmes D, She JK, Roach PL, Morgan H (2007) Bead-based immunoassays using a micro-chip flow cytometer. Lab Chip 7(8):1048–1056. doi: 10.1039/b707507n CrossRefGoogle Scholar
  31. 31.
    Puig O, Caspary F, Rigaut G, Rutz B, Bouveret E, Bragado-Nilsson E, Wilm M, Seraphin B (2001) The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 24(3):218–229. doi: 10.1006/meth.2001.1183 CrossRefGoogle Scholar
  32. 32.
    LaFratta CN, Walt DR (2008) Very high density sensing arrays. Chem Rev 108(2):614–637. doi: 10.1021/cr0681142 CrossRefGoogle Scholar
  33. 33.
    Gorris HH, Blicharz TM, Walt DR (2007) Optical-fiber bundles. FEBS J 274(21):5462–5470. doi: 10.1111/j.1742-4658.2007.06078.x CrossRefGoogle Scholar
  34. 34.
    Blicharz TM, Siqueira WL, Helmerhorst EJ, Oppenheim FG, Wexler PJ, Little FF, Walt DR (2009) Fiber-optic microsphere-based antibody array for the analysis of inflammatory cytokines in saliva. Anal Chem 81(6):2106–2114. doi: 10.1021/ac802181j CrossRefGoogle Scholar
  35. 35.
    Bronk KS, Walt DR (1994) Fabrication of patterned sensor arrays with aryl azides on a polymer-coated imaging optical fiber bundle. Anal Chem 66(20):3519–3520CrossRefGoogle Scholar
  36. 36.
    Walt DR (2010) Fibre optic microarrays. Chem Soc Rev 39(1):38–50. doi: 10.1039/b809339n CrossRefGoogle Scholar
  37. 37.
    Konry T, Walt DR (2009) Intelligent medical diagnostics via molecular logic. J Am Chem Soc 131(37):13232–13233. doi: 10.1021/ja905125b CrossRefGoogle Scholar
  38. 38.
    Konry T, Hayman RB, Walt DR (2009) Microsphere-based rolling circle amplification microarray for the detection of DNA and proteins in a single assay. Anal Chem 81(14):5777–5782. doi: 10.1021/ac900694y CrossRefGoogle Scholar
  39. 39.
    Tam JM, Song L, Walt DR (2009) DNA detection on ultrahigh-density optical fiber-based nanoarrays. Biosens Bioelectron 24(8):2488–2493. doi: 10.1016/j.bios.2008.12.034 CrossRefGoogle Scholar
  40. 40.
    Walt DR, Blicharz TM, Hayman RB, Rissin DM, Bowden M, Siqueira WL, Helmerhorst EJ, Grand-Pierre N, Oppenheim FG, Bhatia JS, Little FF, Brody JS (2007) Microsensor arrays for saliva diagnostics. Ann N Y Acad Sci 1098:389–400. doi: 10.1196/annals.1384.031 CrossRefGoogle Scholar
  41. 41.
    Li J, Zhong W (2007) Typing of multiple single-nucleotide polymorphisms by a microsphere-based rolling circle amplification assay. Anal Chem 79(23):9030–9038. doi: 10.1021/ac701702t CrossRefGoogle Scholar
  42. 42.
    Appleyard DC, Chapin SC, Doyle PS (2011) Multiplexed protein quantification with barcoded hydrogel microparticles. Anal Chem 83(1):193–199. doi: 10.1021/ac1022343 CrossRefGoogle Scholar
  43. 43.
    Tamanaha CR, Mulvaney SP, Rife JC, Whitman LJ (2008) Magnetic labeling, detection, and system integration. Biosens Bioelectron 24(1):1–13. doi: 10.1016/j.bios.2008.02.009 CrossRefGoogle Scholar
  44. 44.
    Weissleder R (2006) Molecular imaging in cancer. Science 312(5777):1168–1171. doi: 10.1126/science.1125949 CrossRefGoogle Scholar
  45. 45.
    Weissleder R, Pittet MJ (2008) Imaging in the era of molecular oncology. Nature 452(7187):580–589. doi: 10.1038/nature06917 CrossRefGoogle Scholar
  46. 46.
    Josephson L, Perez JM, Weissleder R (2001) Magnetic nanosensors for the detection of oligonucleotide sequences. Angew Chem Int Ed 40(17):3204–3206CrossRefGoogle Scholar
  47. 47.
    Hong R, Cima MJ, Weissleder R, Josephson L (2008) Magnetic microparticle aggregation for viscosity determination by MR. Magn Reson Med 59(3):515–520. doi: 10.1002/mrm.21526 CrossRefGoogle Scholar
  48. 48.
    Koh I, Hong R, Weissleder R, Josephson L (2009) Nanoparticle-target interactions parallel antibody-protein interactions. Anal Chem 81(9):3618–3622. doi: 10.1021/ac802717c CrossRefGoogle Scholar
  49. 49.
    Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108(6):2064–2110. doi: 10.1021/cr068445e CrossRefGoogle Scholar
  50. 50.
    Perez JM, Josephson L, O’Loughlin T, Hogemann D, Weissleder R (2002) Magnetic relaxation switches capable of sensing molecular interactions. Nat Biotechnol 20(8):816–820. doi: 10.1038/nbt720 Google Scholar
  51. 51.
    Sun EY, Weissleder R, Josephson L (2006) Continuous analyte sensing with magnetic nanoswitches. Small 2(10):1144–1147. doi: 10.1002/smll.200600204 CrossRefGoogle Scholar
  52. 52.
    Sun EY, Josephson L, Weissleder R (2006) “Clickable” nanoparticles for targeted imaging. Mol Imaging 5(2):122–128Google Scholar
  53. 53.
    Taktak S, Weissleder R, Josephson L (2008) Electrode chemistry yields a nanoparticle-based NMR sensor for calcium. Langmuir 24(14):7596–7598. doi: 10.1021/la8006298 CrossRefGoogle Scholar
  54. 54.
    Koh I, Hong R, Weissleder R, Josephson L (2008) Sensitive NMR sensors detect antibodies to influenza. Angew Chem Int Ed Engl 47(22):4119–4121. doi: 10.1002/anie.200800069 CrossRefGoogle Scholar
  55. 55.
    Kim GY, Josephson L, Langer R, Cima MJ (2007) Magnetic relaxation switch detection of human chorionic gonadotrophin. Bioconjug Chem 18(6):2024–2028. doi: 10.1021/bc070110w CrossRefGoogle Scholar
  56. 56.
    Lee H, Sun E, Ham D, Weissleder R (2008) Chip-NMR biosensor for detection and molecular analysis of cells. Nat Med 14(8):869–874. doi: 10.1038/nm.1711 CrossRefGoogle Scholar
  57. 57.
    Lien K-Y, Liu C-J, Lin Y-C, Kuo P-L, Lee G-B (2009) Extraction of genomic DNA and detection of single nucleotide polymorphism genotyping utilizing an integrated magnetic bead-based microfluidic platform. Microfluidics and Nanofluidics 6(4):539–555. doi: 10.1007/s10404-008-0337-x CrossRefGoogle Scholar
  58. 58.
    Tsourkas A, Hofstetter O, Hofstetter H, Weissleder R, Josephson L (2004) Magnetic relaxation switch immunosensors detect enantiomeric impurities. Angew Chem Int Ed Engl 43(18):2395–2399. doi: 10.1002/anie.200352998 CrossRefGoogle Scholar
  59. 59.
    Daniel KD, Kim GY, Vassiliou CC, Galindo M, Guimaraes AR, Weissleder R, Charest A, Langer R, Cima MJ (2009) Implantable diagnostic device for cancer monitoring. Biosens Bioelectron 24(11):3252–3257. doi: 10.1016/j.bios.2009.04.010 CrossRefGoogle Scholar
  60. 60.
    Daniel KD, Kim GY, Vassiliou CC, Jalali-Yazdi F, Langer R, Cima MJ (2007) Multi-reservoir device for detecting a soluble cancer biomarker. Lab Chip 7(10):1288–1293. doi: 10.1039/b705143c CrossRefGoogle Scholar
  61. 61.
    Graham DL, Ferreira HA, Freitas PP (2004) Magnetoresistive-based biosensors and biochips. Trends Biotechnol 22(9):455–462. doi: 10.1016/j.tibtech.2004.06.006 CrossRefGoogle Scholar
  62. 62.
    Wang SX, Li G (2008) Advances in giant magnetoresistance biosensors with magnetic nanoparticle tags: review and outlook. IEEE Trans Magn 44(7):1687–1702CrossRefGoogle Scholar
  63. 63.
    Fu A, Hu W, Xu L, Wilson RJ, Yu H, Osterfeld SJ, Gambhir SS, Wang SX (2009) Protein-functionalized synthetic antiferromagnetic nanoparticles for biomolecule detection and magnetic manipulation. Angew Chem Int Ed Engl 48(9):1620–1624. doi: 10.1002/anie.200803994 CrossRefGoogle Scholar
  64. 64.
    Osterfeld SJ, Yu H, Gaster RS, Caramuta S, Xu L, Han SJ, Hall DA, Wilson RJ, Sun S, White RL, Davis RW, Pourmand N, Wang SX (2008) Multiplex protein assays based on real-time magnetic nanotag sensing. Proc Natl Acad Sci USA 105(52):20637–20640. doi: 10.1073/pnas.0810822105 CrossRefGoogle Scholar
  65. 65.
    Srinivasan B, Li Y, Jing Y, Xu Y, Yao X, Xing C, Wang JP (2009) A detection system based on giant magnetoresistive sensors and high-moment magnetic nanoparticles demonstrates zeptomole sensitivity: potential for personalized medicine. Angew Chem Int Ed Engl 48(15):2764–2767. doi: 10.1002/anie.200806266 CrossRefGoogle Scholar
  66. 66.
    De Palma R, Reekmans G, Liu C, Wirix-Speetjens R, Laureyn W, Nilsson O, Lagae L (2007) Magnetic bead sensing platform for the detection of proteins. Anal Chem 79(22):8669–8677. doi: 10.1021/ac070821n CrossRefGoogle Scholar
  67. 67.
    Hu W, Wilson RJ, Koh A, Fu A, Faranesh AZ, Earhart CM, Osterfeld SJ, Han S-J, Xu L, Guccione S, Sinclair R, Wang SX (2008) High-moment antiferromagnetic nanoparticles with tunable magnetic properties. Adv Mater (Weinheim, Germany) 20(8):1479–1483CrossRefGoogle Scholar
  68. 68.
    Wulff-Burchfield E, Schell WA, Eckhardt AE, Pollack MG, Hua Z, Rouse JL, Pamula VK, Srinivasan V, Benton JL, Alexander BD, Wilfret DA, Kraft M, Cairns CB, Perfect JR, Mitchell TG (2010) Microfluidic platform versus conventional real-time polymerase chain reaction for the detection of Mycoplasma pneumoniae in respiratory specimens. Diagn Microbiol Infect Dis 67(1):22–29CrossRefGoogle Scholar
  69. 69.
    Sun Y, Dhumpa R, Bang DD, Høgberg J, Handberg K, Wolff A (2011) A lab-on-a-chip device for rapid identification of avian influenza viral RNA by solid-phase PCR. Lab on a Chip.Google Scholar
  70. 70.
    Palanisamy R, Connolly AR, Trau M (2010) Considerations of solid-phase DNA amplification. Bioconjug Chem 21(4):690–695CrossRefGoogle Scholar
  71. 71.
    Frisk ML, Tepp WH, Johnson EA, Beebe DJ (2009) Self-assembled peptide monolayers as a toxin sensing mechanism within arrayed microchannels. Anal Chem 81(7):2760–2767CrossRefGoogle Scholar
  72. 72.
    Liao JC, Mastali M, Gau V, Suchard MA, Moller AK, Bruckner DA, Babbitt JT, Li Y, Gornbein J, Landaw EM, McCabe ERB, Churchill BM, Haake DA (2006) Use of electrochemical DNA biosensors for rapid molecular identification of uropathogens in clinical urine specimens. J Clin Microbiol 44(2):561–570CrossRefGoogle Scholar
  73. 73.
    Einav S, Gerber D, Bryson PD, Sklan EH, Elazar M, Maerkl SJ, Glenn JS, Quake SR (2008) Discovery of a hepatitis C target and its pharmacological inhibitors by microfluidic affinity analysis. Nat Biotechnol 26(9):1019–1027CrossRefGoogle Scholar
  74. 74.
    Agresti JJ, Antipov E, Abate AR, Ahn K, Rowat AC, Baret JC, Marquez M, Klibanov AM, Griffiths AD, Weitz DA (2010) Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proc Natl Acad Sci USA 107(9):4004–4009. doi: 10.1073/pnas.0910781107 CrossRefGoogle Scholar
  75. 75.
    Kiss MM, Ortoleva-Donnelly L, Beer NR, Warner J, Bailey CG, Colston BW, Rothberg JM, Link DR, Leamon JH (2008) High-throughput quantitative polymerase chain reaction in picoliter droplets. Anal Chem 80(23):8975–8981CrossRefGoogle Scholar
  76. 76.
    Koster S, Angile FE, Duan H, Agresti JJ, Wintner A, Schmitz C, Rowat AC, Merten CA, Pisignano D, Griffiths AD, Weitz DA (2008) Drop-based microfluidic devices for encapsulation of single cells. Lab Chip 8(7):1110–1115. doi: 10.1039/b802941e CrossRefGoogle Scholar
  77. 77.
    Hewett PW (2001) Identification of tumour-induced changes in endothelial cell surface protein expression: an in vitro model. Int J Biochem Cell Biol 33(4):325–335. doi: S1357-2725(01)00020-6 [pii] CrossRefGoogle Scholar
  78. 78.
    Pembrey RS, Marshall KC, Schneider RP (1999) Cell surface analysis techniques: what do cell preparation protocols do to cell surface properties? Appl Environ Microbiol 65(7):2877–2894Google Scholar
  79. 79.
    Joensson HN, Samuels ML, Brouzes ER, Medkova M, Uhlen M, Link DR, Andersson-Svahn H (2009) Detection and analysis of low-abundance cell-surface biomarkers using enzymatic amplification in microfluidic droplets. Angew Chem Int Ed Engl 48(14):2518–2521. doi: 10.1002/anie.200804326 CrossRefGoogle Scholar
  80. 80.
    Williams R, Peisajovich SG, Miller OJ, Magdassi S, Tawfik DS, Griffiths AD (2006) Amplification of complex gene libraries by emulsion PCR. Nat Methods 3(7):545–550. doi: 10.1038/nmeth896 CrossRefGoogle Scholar
  81. 81.
    Beer NR, Hindson BJ, Wheeler EK, Hall SB, Rose KA, Kennedy IM, Colston BW (2007) On-chip, real-time, single-copy polymerase chain reaction in picoliter droplets. Anal Chem 79(22):8471–8475. doi: 10.1021/ac701809w CrossRefGoogle Scholar
  82. 82.
    Tewhey R, Warner JB, Nakano M, Libby B, Medkova M, David PH, Kotsopoulos SK, Samuels ML, Hutchison JB, Larson JW, Topol EJ, Weiner MP, Harismendy O, Olson J, Link DR, Frazer KA (2009) Microdroplet-based PCR enrichment for large-scale targeted sequencing. Nat Biotechnol 27(11):1025–1031. doi: 10.1038/nbt.1583 CrossRefGoogle Scholar
  83. 83.
    Huang N-T, Truxal SC, Tung Y-C, Hsiao AY, Luker GD, Takayama S, Kurabayashi K (2010) Multiplexed spectral signature detection for microfluidic color-coded bioparticle flow. Anal Chem 82(22):9506–9512. doi: 10.1021/ac102240g CrossRefGoogle Scholar
  84. 84.
    Diercks AH, Ozinsky A, Hansen CL, Spotts JM, Rodriguez DJ, Aderem A (2009) A microfluidic device for multiplexed protein detection in nano-liter volumes. Anal Biochem 386(1):30–35. doi: 10.1016/j.ab.2008.12.012 CrossRefGoogle Scholar
  85. 85.
    Yu X, Hartmann M, Wang Q, Poetz O, Schneiderhan-Marra N, Stoll D, Kazmaier C, Joos TO (2010) μFBI: a microfluidic bead-based immunoassay for multiplexed detection of proteins from a μL sample volume. PLoS One 5(10):e13125CrossRefGoogle Scholar
  86. 86.
    Kim DN, Lee Y, Koh W-G (2009) Fabrication of microfluidic devices incorporating bead-based reaction and microarray-based detection system for enzymatic assay. Sensor Actuator B Chem 137(1):305–312. doi: 10.1016/j.snb.2008.12.042 CrossRefGoogle Scholar
  87. 87.
    Peyman SA, Iles A, Pamme N (2009) Mobile magnetic particles as solid-supports for rapid surface-based bioanalysis in continuous flow. Lab Chip 9(21):3110–3117CrossRefGoogle Scholar
  88. 88.
    Christel LA, Petersen K, McMillan W, Northrup MA (1999) Rapid, automated nucleic acid probe assays using silicon microstructures for nucleic acid concentration. J Biomech Eng 121(1):22–27CrossRefGoogle Scholar
  89. 89.
    Cady NC, Stelick S, Batt CA (2003) Nucleic acid purification using microfabricated silicon structures. Biosens Bioelectron 19(1):59–66. doi: S0956566303001234[pii] CrossRefGoogle Scholar
  90. 90.
    Tian H, Huhmer AF, Landers JP (2000) Evaluation of silica resins for direct and efficient extraction of DNA from complex biological matrices in a miniaturized format. Anal Biochem 283(2):175–191. doi: 10.1006/abio.2000.4577 CrossRefGoogle Scholar
  91. 91.
    Lehmann U, Vandevyver C, Parashar VK, Gijs MA (2006) Droplet-based DNA purification in a magnetic lab-on-a-chip. Angew Chem Int Ed Engl 45(19):3062–3067. doi: 10.1002/anie.200503624 CrossRefGoogle Scholar
  92. 92.
    Yeung SW, Lee TM, Cai H, Hsing IM (2006) A DNA biochip for on-the-spot multiplexed pathogen identification. Nucleic Acids Res 34(18):e118. doi: 10.1093/nar/gkl702 CrossRefGoogle Scholar
  93. 93.
    Lee JG, Cheong KH, Huh N, Kim S, Choi JW, Ko C (2006) Microchip-based one step DNA extraction and real-time PCR in one chamber for rapid pathogen identification. Lab Chip 6(7):886–895. doi: 10.1039/b515876a CrossRefGoogle Scholar
  94. 94.
    Cho YK, Lee JG, Park JM, Lee BS, Lee Y, Ko C (2007) One-step pathogen specific DNA extraction from whole blood on a centrifugal microfluidic device. Lab Chip 7(5):565–573. doi: 10.1039/b616115d CrossRefGoogle Scholar
  95. 95.
    Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann N, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ, Worley KC, Rives CM, Gorrell JH, Metzker ML, Naylor SL, Kucherlapati RS, Nelson DL, Weinstock GM, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith DR, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee HM, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis RW, Federspiel NA, Abola AP, Proctor MJ, Myers RM, Schmutz J, Dickson M, Grimwood J, Cox DR, Olson MV, Kaul R, Shimizu N, Kawasaki K, Minoshima S, Evans GA, Athanasiou M, Schultz R, Roe BA, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie WR, de la Bastide M, Dedhia N, Blocker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown DG, Burge CB, Cerutti L, Chen HC, Church D, Clamp M, Copley RR, Doerks T, Eddy SR, Eichler EE, Furey TS, Galagan J, Gilbert JG, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson LS, Jones TA, Kasif S, Kaspryzk A, Kennedy S, Kent WJ, Kitts P, Koonin EV, Korf I, Kulp D, Lancet D, Lowe TM, McLysaght A, Mikkelsen T, Moran JV, Mulder N, Pollara VJ, Ponting CP, Schuler G, Schultz J, Slater G, Smit AF, Stupka E, Szustakowski J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf YI, Wolfe KH, Yang SP, Yeh RF, Collins F, Guyer MS, Peterson J, Felsenfeld A, Wetterstrand KA, Patrinos A, Morgan MJ, de Jong P, Catanese JJ, Osoegawa K, Shizuya H, Choi S, Chen YJ (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921. doi: 10.1038/35057062 CrossRefGoogle Scholar
  96. 96.
    Funfak A, Hartung R, Cao J, Martin K, Wiesmüller K-H, Wolfbeis OS, Köhler JM (2009) Highly resolved dose-response functions for drug-modulated bacteria cultivation obtained by fluorometric and photometric flow-through sensing in microsegmented flow. Sensor Actuator B Chem 142(1):66–72. doi: 10.1016/j.snb.2009.07.017 CrossRefGoogle Scholar
  97. 97.
    Dressman D, Yan H, Traverso G, Kinzler KW, Vogelstein B (2003) Transforming single DNA molecules into fluorescent magnetic particles for detection and enumeration of genetic variations. Proc Natl Acad Sci USA 100(15):8817–8822. doi: 10.1073/pnas.1133470100 CrossRefGoogle Scholar
  98. 98.
    Huang WH, Cheng W, Zhang Z, Pang DW, Wang ZL, Cheng JK, Cui DF (2004) Transport, location, and quantal release monitoring of single cells on a microfluidic device. Anal Chem 76(2):483–488. doi: 10.1021/ac035026y CrossRefGoogle Scholar
  99. 99.
    Saliba AE, Saias L, Psychari E, Minc N, Simon D, Bidard FC, Mathiot C, Pierga JY, Fraisier V, Salamero J, Saada V, Farace F, Vielh P, Malaquin L, Viovy JL (2010) Microfluidic sorting and multimodal typing of cancer cells in self-assembled magnetic arrays. Proc Natl Acad Sci USA 107(33):14524–14529. doi: 10.1073/pnas.1001515107 CrossRefGoogle Scholar
  100. 100.
    Nagrath S, Sequist LV, Maheswaran S, Bell DW, Irimia D, Ulkus L, Smith MR, Kwak EL, Digumarthy S, Muzikansky A, Ryan P, Balis UJ, Tompkins RG, Haber DA, Toner M (2007) Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450(7173):1235–1239. doi: 10.1038/nature06385 CrossRefGoogle Scholar
  101. 101.
    Maheswaran S, Sequist LV, Nagrath S, Ulkus L, Brannigan B, Collura CV, Inserra E, Diederichs S, Iafrate AJ, Bell DW, Digumarthy S, Muzikansky A, Irimia D, Settleman J, Tompkins RG, Lynch TJ, Toner M, Haber DA (2008) Detection of mutations in EGFR in circulating lung-cancer cells. N Engl J Med 359(4):366–377. doi: 10.1056/NEJMoa0800668 CrossRefGoogle Scholar
  102. 102.
    Cheng X, Irimia D, Dixon M, Sekine K, Demirci U, Zamir L, Tompkins RG, Rodriguez W, Toner M (2007) A microfluidic device for practical label-free CD4+ T cell counting of HIV-infected subjects. Lab Chip 7(2):170–178CrossRefGoogle Scholar
  103. 103.
    Clark AM, Sousa KM, Jennings C, MacDougald OA, Kennedy RT (2009) Continuous-flow enzyme assay on a microfluidic chip for monitoring glycerol secretion from cultured adipocytes. Anal Chem 81(6):2350–2356. doi: 10.1021/ac8026965 CrossRefGoogle Scholar
  104. 104.
    Singhal A, Haynes CA, Hansen CL (2010) Microfluidic measurement of antibody−antigen binding kinetics from low-abundance samples and single cells. Anal Chem 82(20):8671–8679. doi: 10.1021/ac101956e CrossRefGoogle Scholar
  105. 105.
    Love JC, Ronan JL, Grotenbreg GM, van der Veen AG, Ploegh HL (2006) A microengraving method for rapid selection of single cells producing antigen-specific antibodies. Nat Biotechnol 24(6):703–707. doi: 10.1038/nbt1210 CrossRefGoogle Scholar
  106. 106.
    Gong Y, Ogunniyi AO, Love JC (2010) Massively parallel detection of gene expression in single cells using subnanolitre wells. Lab Chip 10(18):2334–2337CrossRefGoogle Scholar
  107. 107.
    Han Q, Bradshaw EM, Nilsson B, Hafler DA, Love JC (2010) Multidimensional analysis of the frequencies and rates of cytokine secretion from single cells by quantitative microengraving. Lab Chip 10(11):1391–1400CrossRefGoogle Scholar
  108. 108.
    Jokerst JV, Floriano PN, Christodoulides N, Simmons GW, McDevitt JT (2008) Integration of semiconductor quantum dots into nano-bio-chip systems for enumeration of CD4+ T cell counts at the point-of-need. Lab Chip 8(12):2079–2090CrossRefGoogle Scholar
  109. 109.
    Konry T, Smolina I, Yarmush JM, Irimia D, Yarmush ML (2011) Ultrasensitive detection of low-abundance surface-marker protein using isothermal rolling circle amplification in a microfluidic nanoliter platform. Small 7(3):395–400. doi: 10.1002/smll.201001620 CrossRefGoogle Scholar
  110. 110.
    Konry T, Dominguez-Villar M, Baecher-Allan C, Hafler DA, Yarmush ML (2011) Droplet-based microfluidic platforms for single T cell secretion analysis of IL-10 cytokine. Biosens Bioelectron 26(5):2707–2710. doi: 10.1016/j.bios.2010.09.006 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Tania Konry
    • 1
    Email author
  • Shyam Sundhar Bale
    • 1
  • Abhinav Bhushan
    • 1
  • Keyue Shen
    • 1
  • Erkin Seker
    • 2
  • Boris Polyak
    • 3
  • Martin Yarmush
    • 1
    Email author
  1. 1.Center for Engineering in Medicine and Surgical Services, Massachusetts General HospitalHarvard Medical School and the Shriners Hospitals for ChildrenBostonUSA
  2. 2.Department of Electrical and Computer EngineeringUniversity of California, DavisDavisUSA
  3. 3.Department of SurgeryDrexel University College of MedicinePhiladelphiaUSA

Personalised recommendations