Microchimica Acta

, Volume 176, Issue 1–2, pp 57–64 | Cite as

Visual and colorimetric detection of mercury(II) ion using gold nanoparticles stabilized with a dithia-diaza ligand

Original Paper

Abstract

We have developed a simple method for the highly selective colorimetric detection of dissolved mercury(II) ions via direct formation of gold nanoparticles (AuNPs). The dithia-diaza ligand 2-[3-(2-amino-ethylsulfanyl)-propylsulfanyl]-ethylamine (AEPE) was used as a stabilizer to protect AuNPs from aggregation and to impart highly selective recognition of Hg(II) ion over other metal ions. A solution of Au(III) ion is directly reduced by sodium borohydride in the presence of AEPE and the detergent Triton X-100. This results in the formation of AEPE-AuNPs and a red coloration of the solution. On the other hand, in the presence of Hg(II), the solution turns blue within a few seconds after the addition of borohydride. This can be detected spectrophotometrically or even visually. The method was successfully applied to quantify Hg(II) levels in water sample, with a minimum detectable concentration as low as 35 nM.

Figure

A rapid colorimetric method for Hg2+ detection based on the reduction of Au3+ to gold nanoparticles in the presence of dithia-diaza (2S-2N) ligand was developed. The colors of the solutions without and with Hg2+ were red and blue, respectively.

Keywords

Gold nanoparticle Mercury(II) Dithia-diaza ligand Colorimetric detection Naked-eye 

Supplementary material

604_2011_691_MOESM1_ESM.pdf (211 kb)
ESM 1(PDF 211 kb)

References

  1. 1.
    Yang H, Zhou Z, Li F, Yi T, Huang C (2007) New Hg2+ and Ag+ selective colorimetric sensor based on thiourea subunits. Inorg Chem Commun 10:1136–1139CrossRefGoogle Scholar
  2. 2.
    Diez-Gil C, Caballero A, Ratera I, Tarraga A, Molina P, Veciana J (2007) Naked-eye and selective detection of mercury(II) ions in mixed aqueous media using a cellulose-based support. Sensors 7:3481–3488CrossRefGoogle Scholar
  3. 3.
    Tan J, Yan XP (2008) 2,1,3-Benzoxadiazole-based selective chromogenic chemosensor for rapid naked-eye detection of Hg2+ and Cu2+. Talanta 76:9–14CrossRefGoogle Scholar
  4. 4.
    Leng B, Zou L, Jiang J, Tian H (2009) Colorimetric detection of mercuric ion (Hg2+) in aqueous media using chemodosimeter-functionalized gold nanoparticles. Sensor Actuat B 140:162–169CrossRefGoogle Scholar
  5. 5.
    Rosi NL, Mirkin CA (2005) Nanostructures in biodiagnostics. Chem Rev 105:1547–1562CrossRefGoogle Scholar
  6. 6.
    Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346CrossRefGoogle Scholar
  7. 7.
    Ma M, Wang J, Zheng X (2011) Enhancement of the colorimetric sensitivity of gold nanoparticles with triethanolamine to minimize interparticle repulsion. Microchim Acta 172:155–162CrossRefGoogle Scholar
  8. 8.
    Huang CC, Chang HT (2007) Parameters for selective colorimetric sensing of mercury(II) in aqueous solutions using mercaptopropionic acid-modified gold nanoparticles. Chem Commun 12:1215–1217CrossRefGoogle Scholar
  9. 9.
    Xu Q, Du S, Jin G, Li H, Hu X (2011) Determination of acetamiprid by a colorimetric method based on the aggregation of gold nanoparticles. Microchim Acta 173:323–329CrossRefGoogle Scholar
  10. 10.
    Darbha GK, Singh AK, Rai US, Yu E, Yu H, Chandra RP (2008) Selective detection of mercury(II) ion using nonlinear optical properties of gold nanoparticles. J Am Chem Soc 130:8038–8043CrossRefGoogle Scholar
  11. 11.
    Yu CJ, Tseng WL (2008) Colorimetric detection of mercury(II) in a high-salinity solution using gold nanoparticles capped with 3-mercaptopropionate acid and adenosine monophosphate. Langmuir 24:12717–12722CrossRefGoogle Scholar
  12. 12.
    Hung YL, Hsiung TM, Chen YY, Huang YF, Huang CC (2010) Colorimetric detection of heavy metal ions using label-free gold nanoparticles and alkanethiols. J Phys Chem C 114:16329–16334CrossRefGoogle Scholar
  13. 13.
    Liu D, Qu W, Chen W, Zhang W, Wang Z, Jiang X (2010) Highly sensitive, colorimetric detection of mercury(II) in aqueous media by quaternary ammonium group-capped gold nanoparticles at room temperature. Anal Chem 82:9606–9610CrossRefGoogle Scholar
  14. 14.
    Hirayama T, Taki M, Kashiwagi Y, Nakamoto M, Kunishita A, Itoh S, Yamamoto Y (2008) Colorimetric response to mercury-induced abstraction of triethylene glycol ligands from a gold nanoparticle surface. Dalton Trans 35:4705–4707CrossRefGoogle Scholar
  15. 15.
    Si S, Kotal A, Mandal TK (2007) One-dimensional assembly of peptide-functionalized gold nanoparticles: an approach toward mercury ion sensing. J Phys Chem C 111:1248–1255CrossRefGoogle Scholar
  16. 16.
    Kim YR, Mahajan RK, Kim JS, Kim H (2010) Highly sensitive gold nanoparticle-based colorimetric sensing of mercury(II) through simple ligand exchange reaction in aqueous media. ACS Appl Mater Interfaces 2:292–295CrossRefGoogle Scholar
  17. 17.
    Xu X, Wang J, Jiao K, Yang X (2009) Colorimetric detection of mercury ion (Hg2+) based on DNA oligonucleotides and unmodified gold nanoparticles sensing system with a tunable detection range. Biosens Bioelectron 24:3153–3158CrossRefGoogle Scholar
  18. 18.
    Li T, Dong S, Wang E (2009) Label-free colorimetric detection of aqueous mercury ion (Hg2+) using Hg2+-modulated G-quadruplex-based DNAzymes. Anal Chem 81:2144–2149CrossRefGoogle Scholar
  19. 19.
    Liu ZD, Li YF, Ling J, Huang CZ (2009) A localized surface plasmon resonance light-scattering assay of mercury (II) on the basis of Hg2+-DNA complex induced aggregation of gold nanoparticles. Environ Sci Technol 43:5022–5027CrossRefGoogle Scholar
  20. 20.
    Liu CW, Huang CC, Chang HT (2009) Highly selective DNA-based sensor for lead(II) and mercury(II) ions. Anal Chem 81:2383–2387CrossRefGoogle Scholar
  21. 21.
    Lin CY, Yu CJ, Lin YH, Tseng WL (2010) Colorimetric sensing of silver(I) and mercury(II) ions based on an assembly of tween 20-stabilized gold nanoparticles. Anal Chem 82:6830–6837CrossRefGoogle Scholar
  22. 22.
    Aragay G, Pons J, Ros J, Merkoci A (2010) Aminopyrazole-based ligand induces gold nanoparticle formation and remains available for heavy metal ions sensing. A simple mix and detect approach. Langmuir 26:10165–10170CrossRefGoogle Scholar
  23. 23.
    Fan A, Ling Y, Lau C, Lu J (2010) Direct colorimetric visualization of mercury (Hg2+) based on the formation of gold nanoparticles. Talanta 82:687–692CrossRefGoogle Scholar
  24. 24.
    Puanngam M, Unob F (2008) Preparation and use of chemically modified MCM-41 and silica gel as selective adsorbents for Hg(II) ions. J Hazard Mater 154:578–587CrossRefGoogle Scholar
  25. 25.
    Phothitontimongkol T, Siebers N, Sukpirom N, Unob F (2009) Preparation and characterization of novel organo-clay minerals for Hg(II) ions adsorption from aqueous solution. Appl Clay Sci 43:343–349CrossRefGoogle Scholar
  26. 26.
    Wanichacheva N, Kamkaew A, Watpathomsub S, Lee VS, Grudpan K (2010) 2-[3-(2-Aminoethylsulfanyl)propylsulfanyl]ethanamine bearing dansyl subunits: an efficient, simple, and rapid fluorometric sensor for the detection of mercury(II) ions. Chem Lett 39:1099–1101CrossRefGoogle Scholar
  27. 27.
    Choudhury SB, Ray D, Chakravorty A (1991) Sulfur-ligated nickel oxidation states. Chemistry of family of NizS2N4 (z = +2, +3, +4) complexes incorporating hexadentate thioether-imine-oxime binding. Inorg Chem 30:4354–4360CrossRefGoogle Scholar
  28. 28.
    Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107:4797–4862CrossRefGoogle Scholar
  29. 29.
    Nguyen DT, Kim DJ, So MG, Kim KS (2010) Experimental measurements of gold nanoparticle nucleation and growth by citrate reduction of HAuCl4. Adv Powder Technol 21:111–118CrossRefGoogle Scholar
  30. 30.
    Zhang Z, Wu Y (2010) Investigation of the NaBH4-induced aggregation of Au nanoparticles. Langmuir 26:9214–9223CrossRefGoogle Scholar
  31. 31.
    Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85:3533–3539CrossRefGoogle Scholar
  32. 32.
    Thomas KG, Zajicek J, Kamat PV (2002) Surface binding properties of tetraoctylammonium bromide-capped gold nanoparticles. Langmuir 18:3722–3727CrossRefGoogle Scholar
  33. 33.
    Rex M, Hernandez FE, Campiglia AD (2006) Pushing the limits of mercury sensors with gold nanorods. Anal Chem 78:445–451CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceChulalongkorn UniversityBangkokThailand

Personalised recommendations