Skip to main content
Log in

Room temperature electrochemical synthesis of CuO flower-like microspheres and their electrooxidative activity towards hydrogen peroxide

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We describe a facile electrochemical route for the synthesis of CuO flower-like microspheres (CuO FMs) by anodic dissolution of bulk Cu in sodium hydroxide solution at room temperature and without heating. Scanning electron microscopy and X-ray diffraction revealed that the CuO FMs are phase-pure monoclinic crystallites and comprised of CuO nanoflakes. The concentration of NaOH has a large effect on the size of the CuO FMs. The possible formation mechanism is discussed. The CuO FMs are electrocatalytically active towards the oxidation of H2O2, and this has resulted in a sensor for H2O2. To our knowledge, this is the simplest way to obtain clean CuO FMs.

A facile electrochemical route, which is carried out at room temperature (25 °C), is introduced for the fast fabrication of CuO flower-like microspheres (CuO FMs). The CuO FMs modified glassy carbon electrode exhibits good electrocatalytic activity towards the oxidation of H2O2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen LB, Lu N, Xu CM, Yu HC, Wang TH (2009) Electrochemical performance of polycrystalline CuO nanowires as anode material for Li ion batteries. Electrochim Acta 54:4198–4201

    Article  CAS  Google Scholar 

  2. Xiang JY, Tu JP, Zhang L, Zhou Y, Wang XL, Shi SJ (2010) Simple synthesis of surface-modified hierarchical copper oxide spheres with needle-like morphology as anode for lithium ion batteries. Electrochim Acta 55:1820–1824

    Article  CAS  Google Scholar 

  3. Pan QM, Jin HZ, Wang HB, Yin GP (2007) Flower-like CuO film-electrode for lithium ion batteries and the effect of surface morphology on electrochemical performance. Electrochim Acta 53:951–956

    Article  CAS  Google Scholar 

  4. Xiang JY, Tu JP, Huang XH, Yang YZ (2008) A comparison of anodically grown CuO nanotube film and Cu2O film as anodes for lithium ion batteries. J Solid State Electrochem 12:941–945

    Article  CAS  Google Scholar 

  5. Korshunov A, Heyrovský M (2009) Electrochemical behavior of copper metal core/oxide shell ultra-fine particles on mercury electrodes in aqueous dispersions. J Electroanal Chem 629:23–29

    Article  CAS  Google Scholar 

  6. Ke FS, Huang L, Wei GZ, Xue LJ, Li JT, Zhang B, Chen SR, Fan XY, Sun SG (2009) One-step fabrication of CuO nanoribbons array electrode and its excellent lithium storage performance. Electrochim Acta 54:5825–5829

    Article  CAS  Google Scholar 

  7. Manna S, Das K, De SK (2010) Template-free synthesis of mesoporous CuO dandelion structures for optoelectronic applications. ACS Appl Mater Interfaces 2:1536–1542

    Article  CAS  Google Scholar 

  8. Xiang JY, Tu JP, Yuan YF, Huang XH, Zhang L, Zhou Y (2009) Improved electrochemical performances of core-shell Cu2O/Cu composite prepared by a simple one-step method. Electrochem Commun 11:262–265

    Article  CAS  Google Scholar 

  9. Hu YY, Huang XT, Wang K, Liu JP, Jiang J, Ding RM, Ji XX, Li X (2010) Kirkendall-effect-based growth of dendrite-shaped CuO hollow micro/nanostructures for lithium-ion battery anodes. J Solid State Chem 183:662–667

    Article  CAS  Google Scholar 

  10. Sarkar SK, Burla N, Bohannan EW, Switzer JA (2008) Inducing enantioselectivity in electrodeposited CuO films by chiral etching. Electrochim Acta 53:6191–6195

    Article  CAS  Google Scholar 

  11. Satheesh Babu TGS, Ramachandran T (2010) Development of highly sensitive non-enzymatic sensor for the selective determination of glucose and fabrication of a working model. Electrochim Acta 55:1612–1618

    Article  Google Scholar 

  12. Liu Y, Chu Y, Zhuo YJ, Li MY, Li LL, Dong LH (2007) Anion-controlled construction of CuO honeycombs and flowerlike assemblies on copper foils. Cryst Growth Des 7:467–470

    Article  CAS  Google Scholar 

  13. Vaseem M, Umar A, Kim SH, Hahn YB (2008) Low-temperature synthesis of flower-shaped CuO nanostructures by solution process: formation mechanism and structural properties. J Phys Chem C 112:5729–5735

    Article  CAS  Google Scholar 

  14. Xu YY, Chen DR, Jiao XL (2005) Fabrication of CuO pricky microspheres with tunable size by a simple solution route. J Phys Chem B 109:13561–13566

    Article  CAS  Google Scholar 

  15. Lu CH, Qi LM, Yang JH, Zhang DY, Wu NZ, Ma JM (2004) Simple template-free solution route for the controlled synthesis of Cu(OH)2 and CuO nanostructures. J Phys Chem B 108:17825–17831

    Article  CAS  Google Scholar 

  16. Zhang XJ, Wang GF, Liu XW, Wu JJ, Li M, Gu J, Liu H, Fang B (2008) Different CuO nanostructures: synthesis, characterization, and applications for glucose sensors. J Phys Chem C 112:16845–16849

    Article  CAS  Google Scholar 

  17. Ni YH, Li H, Jin LN, Hong JM (2009) Synthesis of 1D Cu(OH)2 nanowires and transition to 3D CuO microstructures under ultrasonic irradiation, and their electrochemical property. Cryst Growth Des 9:3868–3873

    Article  CAS  Google Scholar 

  18. Xu HL, Wang WZ, Zhu W, Zhou L, Ruan ML (2007) Hierarchical-oriented attachment: from one-dimensional Cu(OH)2 nanowires to two-dimensional CuO nanoleaves. Cryst Growth Des 7:2720–2724

    Article  CAS  Google Scholar 

  19. Jiang XC, Herricks T, Xia YN (2002) CuO nanowires can be synthesized by heating copper substrates in air. Nano Lett 2:1333–1338

    Article  CAS  Google Scholar 

  20. Murray BJ, Li Q, Newberg JT, Menke EJ, Hemminger JC, Penner RM (2005) Shape- and size-selective electrochemical synthesis of dispersed silver(I) oxide colloids. Nano Lett 5:2319–2324

    Article  CAS  Google Scholar 

  21. Chen X, Chen S, Huang W, Zheng JF, Li ZL (2009) Facile preparation of Bi nanoparticles by novel cathodic dispersion of bulk bismuth electrodes. Electrochim Acta 54:7370–7373

    Article  CAS  Google Scholar 

  22. Qiu HJ, Lu L, Xue LY, Huang XR (2010) Facile electrochemical preparation of three-dimensional porous Cu films by potential perturbation. Electrochim Acta 55:6081–6087

    Article  CAS  Google Scholar 

  23. Qiu HJ, Lu L, Huang XR, Qu YB (2010) Facile preparation of Cu2O microcrystals with morphologies of octahedron, half circular and rectangular plates by anodic dissolution of bulk Cu in alkaline aqueous solutions. Electrochim Acta 56:291–296

    Article  CAS  Google Scholar 

  24. Caballero-Briones F, Palacios-Padrós A, Calzadilla O, Sanz F (2010) Evidence and analysis of parallel growth mechanisms in Cu2O films prepared by Cu anodization. Electrochim Acta 55:4353–4358

    Article  CAS  Google Scholar 

  25. Burke LD, Bruton GM, Collins JA (1998) The redox properties of active sites and the importance of the latter in electrocatalysis at copper in base. Electrochim Acta 44:1467–1479

    Article  CAS  Google Scholar 

  26. Ribotta SB, La orgia LF, Gassa LM, Folquer ME (2008) Characterization of anodic films formed on copper in 0.1 M borax solution. J Electroanal Chem 624:262–268

    Article  CAS  Google Scholar 

  27. Kunze J, Maurice V, Klein LH, Strehblow HH, Marcus P (2004) In situ STM study of the duplex passive films formed on Cu(1 1 1) and Cu(0 0 1) in 0.1 M NaOH. Corr Sci 46:245–264

    Article  CAS  Google Scholar 

  28. Tatsuma T, Ogawa T, Sato R, Oyama N (2001) Peroxidase-incorporated sulfonated polyaniline–polycation complexes for electrochemical sensing of H2O2. J Electroanal Chem 501:180–185

    Article  CAS  Google Scholar 

  29. Mendes RK, Carvalhal RF, Kubota LT (2008) Effects of different self-assembled monolayers on enzyme immobilization procedures in peroxidase-based biosensor development. J Electroanal Chem 612:164–172

    Article  CAS  Google Scholar 

  30. Qiu HJ, Xue LY, Ji GL, Zhou GP, Huang XR, Qu YB, Gao PJ (2009) Enzyme-modified nanoporous gold-based electrochemical biosensors. Biosens Bioelectron 24:3014–3018

    Article  CAS  Google Scholar 

  31. Wei H, Chen CG, Han BY, Wang EK (2008) Enzyme colorimetric assay using unmodified silver nanoparticles. Anal Chem 80:7051–7055

    Article  CAS  Google Scholar 

  32. Zhang L, Ni YH, Li H (2010) Addition of porous cuprous oxide to a Nafion film strongly improves the performance of a nonenzymatic glucose sensor. Microchim Acta 171:103–108

    Article  CAS  Google Scholar 

  33. Wang Q, Zheng JB (2010) Electrodeposition of silver nanoparticles on a zinc oxide film: improvement of amperometric sensing sensitivity and stability for hydrogen peroxide determination. Microchim Acta 169:361–365

    Article  CAS  Google Scholar 

  34. Ping JF, Ru SP, Fan K, Wu J, Ying YB (2010) Copper oxide nanoparticles and ionic liquid modified carbon electrode for the non-enzymatic electrochemical sensing of hydrogen peroxide. Microchim Acta 171:117–123

    Article  CAS  Google Scholar 

  35. Xiang JY, Tu JP, Zhang L, Zhou Y, Wang XL, Shi SJ (2010) Self-assembled synthesis of hierarchical nanostructured CuO with various morphologies and their application as anodes for lithium ion batteries. J Power Sources 195:313–319

    Article  CAS  Google Scholar 

  36. Jia WZ, Guo M, Zheng Z, Yu T, Wang Y, Rodriguez EG, Lei Y (2008) Vertically aligned CuO nanowires based electrode for amperometric detection of hydrogen peroxide. Electroanalysis 19:2153–2157

    Article  Google Scholar 

  37. Miao XM, Yuan R, Chai YQ, Shi YT, Yuan YY (2008) Direct electrocatalytic reduction of hydrogen peroxide based on Nafion and copper oxide nanoparticles modified Pt electrode. J Electroanal Chem 612:157–163

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from State Key Laboratory of Microbial Technology of China, the Provincial Natural Science Foundation of Shandong (Y2008B13), the National Natural Science Foundation of China (20973103) and the National Basic Research Program of China (2011CB707400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xirong Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, L., Huang, X. Room temperature electrochemical synthesis of CuO flower-like microspheres and their electrooxidative activity towards hydrogen peroxide. Microchim Acta 175, 151–157 (2011). https://doi.org/10.1007/s00604-011-0663-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-011-0663-7

Keywords

Navigation