Skip to main content
Log in

Voltammetric sensing of paracetamol, dopamine and 4-aminophenol at a glassy carbon electrode coated with gold nanoparticles and an organophillic layered double hydroxide

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A differential pulse voltammetric method was developed for the simultaneous determination of paracetamol, 4-aminophenol and dopamine at pH 7.0 using a glassy carbon electrode (GCE) coated with gold nanoparticles (AuNPs) and a layered double hydroxide sodium modified with dodecyl sulfate (SDS-LDH). The modified electrode displays excellent redox activity towards paracetamol, and the redox current is increased (and the corresponding over-potential decreased) compared to those of the bare GCE, the AuNPs-modified GCE, and the SDS-LDH-modified GCE. The modified electrode enables the determination of paracetamol in the concentration range from 0.5 to 400 μM, with a detection limit of 0.13 μM (at an S/N of 3). The sensor was successfully applied to the stimultaneous determination of paracetamol and dopamine, and of paracetamol and 4-aminophenol, respectively, in pharmaceutical tablets and in spiked human serum samples.

1. Gold nanoparticles and organophillic layered double hydroxide modified glassy carbon electrode was fabricated. 2. The modified electrode displayed excellent redox activity towards paracetamol. 3. This electrode was successfully applied to the simultaneous determination of paracetamol and dopamine, and of paracetamol and 4-aminophenol, respectively

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bosch ME, Sǎnchez AJR, Rojas FS, Ojeda CB (2006) Determination of paracetamol: historical evolution. J Pharm Biomed Anal 42:291–321

    Article  CAS  Google Scholar 

  2. Martin F, McLean A (1998) Comparison of paracetamol-induced hepatotoxicity in the rat in vivo with progression of cell injury in vitro in rat liver slices. Drug and Chemical Toxicology 21:477–494

    Article  CAS  Google Scholar 

  3. Mugford CA, Tarloff JB (1997) The contribution of oxidation and deacetylation to acetaminophen nephrotoxicity in female Sprague-Dawley rats. Toxicol Lett 93:15–22

    Article  CAS  Google Scholar 

  4. Prabakar SJR, Narayanan SS (2007) Amperometric determination of paracetomol by a surface modified cobalt hexacyanoferrate graphite wax composite electrode. Talanta 72:1818–1827

    Article  CAS  Google Scholar 

  5. Monser L, Darghouth F (2002) Simultaneous LC determination of paracetamol and related compounds in pharmaceutical formulations using a carbon-based column. J Pharm Biomed Anal 27:851–860

    Article  CAS  Google Scholar 

  6. Li H, Zhang C, Wang J, Jiang Y, Fawcett JP, Gu J (2010) Simultaneous quantitation of paracetamol, caffeine, pseudoephedrine, chlorpheniramine and cloperastine in human plasma by liquid chromatography-tandem mass spectrometry. J Pharm Biomed Anal 51:716–722

    Article  CAS  Google Scholar 

  7. Sirajuddin KAR, Shah A, Bhanger MI, Niaz A, Mahesar S (2007) Simpler spectrophotometric assay of paracetamol in tablets and urine samples. Spectrochim Acta, Part A 68:747–751

    Article  CAS  Google Scholar 

  8. Vilchez J, Blanc R, Avidad R, Navaló A (1995) Spectrofluorimetric determination of paracetamol in pharmaceuticals and biological fluids. J Pharm Biomed Anal 13:1119–1125

    Article  CAS  Google Scholar 

  9. Ramos ML, Tyson JF, Curran DJ (1998) Determination of acetaminophen by flow injection with on-line chemical derivatization: investigations using visible and FTIR spectrophotometry. Anal Chim Acta 364:107–116

    Article  CAS  Google Scholar 

  10. Németh T, Jankovics P, Németh-Palotás J, Koszegi-Szalai H (2008) Determination of paracetamol and its main impurity 4-aminophenol in analgesic preparations by micellar electrokinetic chromatography. J Pharm Biomed Anal 47:746–749

    Article  Google Scholar 

  11. Gutés A, Calvo D, Céspedes F, del Valle M (2007) Automatic sequential injection analysis electronic tongue with integrated reference electrode for the determination of ascorbic acid, uric acid and paracetamol. Microchim Acta 157:1–6

    Article  Google Scholar 

  12. Easwaramoorthy D, Yu Y-C, Huang H-J (2001) Chemiluminescence detection of paracetamol by a luminol-permanganate based reaction. Anal Chim Acta 439:95–100

    Article  CAS  Google Scholar 

  13. Kozlovskaja S, Baltrūnas G, Malinauskas A (2009) Response of hydrogen peroxide, ascorbic acid, and paracetamol at a platinum electrode coated with microfilms of polyaniline. Microchim Acta 166:229–234

    Article  CAS  Google Scholar 

  14. Zhang Y, Luo L, Ding Y, Liu X, Qian Z (2010) A highly sensitive method for determination of paracetamol by adsorptive stripping voltammetry using a carbon paste electrode modified with nanogold and glutamic acid. Microchim Acta 171:133–138

    Article  CAS  Google Scholar 

  15. Khan A, O’Hare D (2002) Intercalation chemistry of layered double hydroxides: recent developments and applications. J Mater Chem 12:3191–3198

    Article  CAS  Google Scholar 

  16. Hernandez M, Fernandez L, Borras C, Mostany J, Carrero H (2007) Characterization of surfactant/hydrotalcite-like clay/glassy carbon modified electrodes: oxidation of phenol. Anal Chim Acta 597:245–256

    Article  CAS  Google Scholar 

  17. Fernández L, Carrero H (2005) Electrochemical evaluation of ferrocene carboxylic acids confined on surfactant-clay modified glassy carbon electrodes: oxidation of ascorbic acid and uric acid. Electrochim Acta 50:1233–1240

    Article  Google Scholar 

  18. Yin H, Cui L, Ai S, Fan H, Zhu L (2009) Electrochemical determination of bisphenol A at Mg-Al-CO3 layered double hydroxide modified glassy carbon electrode. Electrochim Acta 55:603–610

    Article  Google Scholar 

  19. Fernández L, Borrás C, Carrero H (2006) Electrochemical behavior of phenol in alkaline media at hydrotalcite-like clay/anionic surfactants/glassy carbon modified electrode. Electrochim Acta 52:872–884

    Article  Google Scholar 

  20. Liu J, Lu Y (2006) Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nat Protoc 1:246–252

    Article  CAS  Google Scholar 

  21. Zhou C, Liu Z, Dong Y, Li D (2009) Electrochemical behavior of o-nitrophenol at hexagonal mesoporous silica modified carbon paste electrodes. Electroanalysis 21:853–858

    CAS  Google Scholar 

  22. Goyal R, Singh S (2006) Voltammetric determination of paracetamol at C60-modified glassy carbon electrode. Electrochim Acta 51:3008–3012

    Article  CAS  Google Scholar 

  23. Laviron E (1979) General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J Electroanal Chem 101:19–28

    Article  CAS  Google Scholar 

  24. Wangfuengkanagul N, Chailapakul O (2002) Electrochemical analysis of acetaminophen using a boron-doped diamond thin film electrode applied to flow injection system. J Pharm Biomed Anal 28:841–847

    Article  CAS  Google Scholar 

  25. Wang S, Xie F, Hu R (2007) Carbon-coated nickel magnetic nanoparticles modified electrodes as a sensor for determination of acetaminophen. Sensor Actuat B 123:495–500

    Article  Google Scholar 

  26. Baranowska I, Markowski P, Gerle A, Baranowski J (2008) Determination of selected drugs in human urine by differential pulse voltammetry technique. Bioelectrochemistry 73:5–10

    Article  CAS  Google Scholar 

  27. Kumar SA, Tang C-F, Chen S-M (2008) Electroanalytical determination of acetaminophen using nano-TiO2/polymer coated electrode in the presence of dopamine. Talanta 76:997–1005

    Article  CAS  Google Scholar 

  28. Li M, Jing L (2007) Electrochemical behavior of acetaminophen and its detection on the PANI-MWCNTs composite modified electrode. Electrochim Acta 52:3250–3257

    Article  CAS  Google Scholar 

  29. Kang X, Wang J, Wu H, Liu J, Aksay I, Lin Y (2010) A graphene-based electrochemical sensor for sensitive detection of paracetamol. Talanta 81:754–759

    Article  CAS  Google Scholar 

  30. Kachoosangi R, Wildgoose G, Compton R (2008) Sensitive adsorptive stripping voltammetric determination of paracetamol at multiwalled carbon nanotube modified basal plane pyrolytic graphite electrode. Anal Chim Acta 618:54–60

    Article  CAS  Google Scholar 

  31. Yesilada A, Erdogan H, Ertan M (1991) Second derivative spectrophotometric determination of p-aminophenol in the presence of paracetamol. Anal Lett 24:129–138

    Article  CAS  Google Scholar 

  32. Wu K, Hu S (2004) Electrochemical study and selective determination of dopamine at a multi-wall carbon nanotube-nafion film coated glassy carbon electrode. Microchim Acta 144:131–137

    Article  CAS  Google Scholar 

  33. Lai GS, Zhang HL, Han DY (2008) Electrocatalytic oxidation and voltammetric determination of dopamine at a Nafion/carbon-coated iron nanoparticles-chitosan composite film modified electrode. Microchim Acta 160:233–239

    Article  CAS  Google Scholar 

  34. Sun Y, Fei J, Hou J, Zhang Q, Liu Y, Hu B (2009) Simultaneous determination of dopamine and serotonin using a carbon nanotubes-ionic liquid gel modified glassy carbon electrode. Microchim Acta 165:373–379

    Article  CAS  Google Scholar 

  35. Wang Y, Peng W, Liu L, Tang M, Gao F, Li M (2011) Enhanced conductivity of a glassy carbon electrode modified with a graphene-doped film of layered double hydroxides for selectively sensing of dopamine. Microchim Acta. doi:10.1007/s00604-00011-00593-00604

  36. Zhang L (2008) Covalent modification of glassy carbon electrode with cysteine for the determination of dopamine in the presence of ascorbic acid. Microchim Acta 161:191–200

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors are grateful to the financial supports from the National Natural Science Foundation of China (No. 21075078) and the Natural Science Foundation of Shandong province, China (No. ZR2010BM005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiyun Ai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 289 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yin, H., Shang, K., Meng, X. et al. Voltammetric sensing of paracetamol, dopamine and 4-aminophenol at a glassy carbon electrode coated with gold nanoparticles and an organophillic layered double hydroxide. Microchim Acta 175, 39–46 (2011). https://doi.org/10.1007/s00604-011-0652-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-011-0652-x

Keywords

Navigation