Skip to main content
Log in

A biopolymer-based carbon nanotube interface integrated with a redox shuttle and a D-sorbitol dehydrogenase for robust monitoring of D-sorbitol

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We describe the preparation and characterization of a glassy carbon electrode modified with a bionanocomposite consisting of a hyaluronic acid, dispersed carbon nanotubes, and electrostatically bound toluidine blue. The electrode was used to detect NADH in the batch and flow-injection mode of operation. The electrode was further modified by immobilizing sorbitol dehydrogenase to result in biosensor for D-sorbitol that displays good operational stability, a sensitivity of 10.6 μA mM−1 cm−2, a response time of 16 s, and detection limit in the low micromolar range. The biosensor was successfully applied to off-line monitoring of D-sorbitol during its bioconversion into L-sorbose (a precursor in the synthesis of vitamin C) by Gluconobacter oxydans. The sample assay precision is 2.5% (an average RSD) and the throughput is 65 h−1 if operated in the flow-injection mode. The validation of this biosensor against a reference HPLC method resulted in a slope of correlation of 1.021 ± 0.001 (R 2 = 0.99997).

Immobilisation of D-sorbitol dehydrogenase between two biopolymers on carbon nanotube layer provides stable and robust D-sorbitol biosensing with a mediator being electrostatically bound within the matrix. The biosensor was succesfully applied in analysis of fermentation samples with througput of assays of 65 h−1 in flow system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  2. Wiles PG, Abrahamson J (1978) Carbon fibre layers on arc electrodes—I: their properties and cool-down behaviour. Carbon 16:341–349

    Article  CAS  Google Scholar 

  3. Merkoci A (2006) Carbon nanotubes in analytical sciences. Microchim Acta 152:157–174

    Article  CAS  Google Scholar 

  4. Katz E, Willner I (2004) Biomolecule-functionalized carbon nanotubes: applications in nanobioelectronics. Chemphyschem 5:1085–1104

    Google Scholar 

  5. Vashist SK, Zheng D, Al-Rubeaan K, Luong JHT, Sheu F-S (2011) Advances in carbon nanotube based electrochemical sensors for bioanalytical applications. Biotechnol Adv 29:169–188

    Article  CAS  Google Scholar 

  6. Banks CE, Compton RG (2005) Exploring the electrocatalytic sites of carbon nanotubes for NADH detection: an edge plane pyrolytic graphite electrode study. Analyst 130:1232–1239

    Article  CAS  Google Scholar 

  7. Britto PJ, Santhanam KSV, Ajayan PM (1996) Carbon nanotube electrode for oxidation of dopamine. Bioelectrochem Bioenerg 41:121–125

    Article  CAS  Google Scholar 

  8. Musameh M, Wang J, Merkoci A, Lin YH (2002) Low-potential stable NADH detection at carbon-nanotube-modified glassy carbon electrodes. Electrochem Commun 4:743–746

    Article  CAS  Google Scholar 

  9. Wang J, Musameh M, Lin YH (2003) Solubilization of carbon nanotubes by Nafion toward the preparation of amperometric biosensors. J Am Chem Soc 125:2408–2409

    Article  CAS  Google Scholar 

  10. Kachoosangi RT, Musameh MM, Abu-Yousef I, Yousef JM, Kanan SM, Xiao L, Davies SG, Russell A, Compton RG (2009) Carbon nanotube−ionic liquid composite sensors and biosensors. Anal Chem 81:435–442

    Article  CAS  Google Scholar 

  11. Kumar SA, Chen SM (2008) Electroanalysis of NADH using conducting and redox active polymer/carbon nanotubes modified electrodes-a review. Sensors 8:739–766

    Article  CAS  Google Scholar 

  12. Gorton L, Domínguez E (2002) Electrocatalytic oxidation of NAD(P)H at mediator-modified electrodes. Rev Mol Biotechnol 82:371–392

    Article  CAS  Google Scholar 

  13. Radoi A, Compagnone S (2009) Recent advances in NADH electrochemical sensing design. Bioelectrochemistry 76:126–134

    Article  CAS  Google Scholar 

  14. Katakis I, Dominguez E (1997) Catalytic electrooxidation of NADH for dehydrogenase amperometric biosensors. Microchim Acta 126:11–32

    Article  CAS  Google Scholar 

  15. Arakawa T, Koshida T, Gessei T, Miyajima K, Takahashi D, Kudo H, Yano K, Mitsubayashi K (2011) Biosensor for L-phenylalanine based on the optical detection of NADH using a UV light emitting diode. Microchim Acta 173:199–205

    Article  CAS  Google Scholar 

  16. Korpan YI, Soldatkin OO, Sosovska OF, Klepach HM, Csoregi E, Vocanson F, Jaffrezic-Renault N, Gonchar MV (2010) Formaldehyde-sensitive conductometric sesnors based on commercial and recombinant formaldehyde dehydrogenase. Microchim Acta 170:337–344

    Article  CAS  Google Scholar 

  17. Valcárcel M, Cárdenas S, Simonet BM (2007) Role of carbon nanotubes in analytical science. Anal Chem 79:4788–4797

    Article  Google Scholar 

  18. Dias AMGC, Hussain A, Marcos AS, Roque ACA (2011) A biotechnological perspective on the application of iron oxide magnetic colloids modified with polysaccharides. Biotechnol Adv 29:142–155

    Article  CAS  Google Scholar 

  19. Krajewska B (2004) Application of chitin- and chitosan-based materials for enzyme immobilizations: a review. Enzyme Microb Technol 35:126–139

    Article  CAS  Google Scholar 

  20. Bhattacharyya S, Guillott S, Dabboue H, Tranchant JF, Salvetat JP (2008) Carbon nanotubes as structural nanofibers for hyaluronic acid hydrogel scaffolds. Biomacromolecules 9:505–509

    Article  CAS  Google Scholar 

  21. Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31:603–632

    Article  CAS  Google Scholar 

  22. Koev ST, Dykstra PH, Luo X, Rubloff GW, Bentley WE, Payne GF, Ghodssi R (2010) Chitosan: an integrative biomaterial for lab-on-a-chip devices. Lab Chip 10:3026–3042

    Article  CAS  Google Scholar 

  23. Tkac J, Ruzgas T (2006) Dispersion of single walled carbon nanotubes. Comparison of different dispersing strategies for preparation of modified electrodes toward hydrogen peroxide detection. Electrochem Commun 8:899–903

    Article  CAS  Google Scholar 

  24. Zhang MG, Smith A, Gorski W (2004) Carbon nanotube−chitosan system for electrochemical sensing based on dehydrogenase enzymes. Anal Chem 76:5045–5050

    Article  CAS  Google Scholar 

  25. Tkac J, Whittaker JW, Ruzgas T (2007) The use of single walled carbon nanotubes dispersed in a chitosan matrix for preparation of a galactose biosensor. Biosens Bioelectron 22:1820–1824

    Article  CAS  Google Scholar 

  26. Rappathy D, Gopalan AY, Lee KP (2009) Synergistic contributions of multiwall carbon nanotubes and gold nanoparticles in a chitosan–ionic liquid matrix towards improved performance for a glucose sensor. Electrochem Commun 11:397–401

    Article  Google Scholar 

  27. Razal JM, Gilmore KJ, Wallace GG (2008) Carbon nanotube biofiber formation in a polymer-free coagulation bath. Adv Funct Mater 18:61–66

    Article  CAS  Google Scholar 

  28. Kogan G, Soltes L, Stern R, Gemeiner P (2007) Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol Lett 29:17–25

    Article  CAS  Google Scholar 

  29. Moulton SE, Maugey M, Poulin P, Wallace GG (2007) Liquid crystal behavior of single-walled carbon nanotubes dispersed in biological hyaluronic acid solutions. J Am Chem Soc 129:9452–9457

    Article  CAS  Google Scholar 

  30. Filip J, Šefčovičová J, Tomčík P, Gemeiner P, Tkac J (2011) A hyaluronic acid dispersed carbon nanotube electrode used for a mediatorless NADH sensing and biosensing. Talanta 84:355–361

    Article  CAS  Google Scholar 

  31. Svitel J, Tkac J, Vostiar I, Navratil M, Stefuca V, Bucko M, Gemeiner P (2006) Gluconobacter in biosensors: applications of whole cells and enzymes isolated from Gluconobacter and Acetobacter to biosensor construction. Biotechnol Lett 28:2003–2010

    Article  CAS  Google Scholar 

  32. De Muynck C, Pereira CSS, Naessens M, Parmentier S, Soetaert W, Vandamme EJ (2007) The genus Gluconobacter oxydans: comprehensive overview of biochemistry and biotechnological applications. Crit Rev Biotechnol 27:147–171

    Article  Google Scholar 

  33. Gilli R, Kacurakova M, Mathlouthi M, Navarini L, Paoletti S (1994) FTIR studies of sodium hyaluronate and its oligomers in the amorphous solid phase and in aqueous solution. Carbohydr Res 263:315–326

    Article  CAS  Google Scholar 

  34. Lawrence NS, Wang J (2006) Chemical adsorption of phenothiazine dyes onto carbon nanotubes: toward the low potential detection of NADH. Electrochem Commun 8:71–76

    Article  CAS  Google Scholar 

  35. Ranganathan S, Guo R, Murray RW (2007) Nanoparticle films as electrodes:voltammetric sensitivity to the nanoparticle energy gap. Langmuir 23:7372–7377

    Article  CAS  Google Scholar 

  36. Radoi A, Compagnone D, Batic M, Klincar J, Gorton L, Palleschi G (2007) NADH screen-printed electrodes modified with zirconium phosphate, Meldola blue, and Reinecke salt. Application to the detection of glycerol by FIA. Anal Bioanal Chem 387:1049–1058

    Article  CAS  Google Scholar 

  37. Fanjul-Bolado P, Queipo P, Lamas-Ardisana PJ, Costa-Garcia A (2007) Manufacture and evaluation of carbon nanotube modified screen-printed electrodes as electrochemical tools. Talanta 74:427–433

    Article  CAS  Google Scholar 

  38. Munteanu FD, Mano N, Kuhn A, Gorton L (2004) NADH electrooxidation using carbon paste electrodes modified with nitro-fluorenone derivatives immobilized on zirconium phosphate. J Electroanal Chem 564:167–178

    Article  CAS  Google Scholar 

  39. Stergiou DV, Prodromidis MI, Veltsistas PG, Evmiridis NP (2004) Study of the electrochemical behavior of disperse blue 1-modified graphite electrodes. Application to the flow determination of NADH. Electroanalytical 16:949–954

    Article  CAS  Google Scholar 

  40. Sha YF, Gao Q, Qi B, Yang XR (2004) Electropolymerization of azure B on a screen-printed carbon electrode and its application to the determination of NADH in a flow injection analysis system. Microchim Acta 148:335–341

    Article  CAS  Google Scholar 

  41. Wang Y, You CP, Zhang S, Kong JL, Marty JL, Zhao DY, Liu BH (2009) Electrocatalytic oxidation of NADH at mesoporous carbon modified electrodes. Microchim Acta 167:75–79

    Article  CAS  Google Scholar 

  42. Lin WJ, Liao CS, Jhang JH, Tsai YC (2009) Graphene modified basal and edge plane pyrolytic graphite electrodes for electrocatalytic oxidation of hydrogen peroxide and β-nicotinamide adenine dinucleotide. Electrochem Commun 11:2153–2156

    Article  CAS  Google Scholar 

  43. Tsai YC, Huang JD, Chiu C-C (2007) Amperometric ethanol biosensor based on poly(vinyl alcohol)–multiwalled carbon nanotube–alcohol dehydrogenase biocomposite. Biosens Bioelectron 22:3051–3056

    Article  CAS  Google Scholar 

  44. Wooten M, Gorski W (2010) Facilitation of NADH electro-oxidation at treated carbon nanotubes. Anal Chem 82:1299–1304

    Article  CAS  Google Scholar 

  45. Tsai YC, Chen SY, Liaw HW (2007) Immobilization of lactate dehydrogenase within multiwalled carbon nanotube-chitosan nanocomposite for application to lactate biosensors. Sens Actuat B: Chem 125:474–481

    Article  Google Scholar 

  46. Zhai XR, Wei WZ, Zeng JX, Gong SG, Yin J (2006) Layer-by-layer film based on chitosan/carbon nanotubes, and its application to electrocatalytic oxidation of NADH. Microchim Acta 154:315–320

    Article  CAS  Google Scholar 

  47. Sefcovicova J, Vikartovska A, Patoprsty V, Magdolen P, Katrlik J, Tkac J, Gemeiner P (2009) Off-line FIA monitoring of D-sorbitol consumption during L-sorbose production using a sorbitol biosensor. Anal Chim Acta 644:68–71

    Article  CAS  Google Scholar 

  48. Saidman SB, Lobo-Castanon MJ, Miranda-Ordieres AJ, Tunon-Blanco P (2000) Amperometric detection of D-sorbitol with NAD+−D -sorbitol dehydrogenase modified carbon paste electrode. Anal Chim Acta 424:45–50

    Article  CAS  Google Scholar 

  49. Hassler BL, Kohli N, Zeikus JG, Lee I, Worden RM (2007) Renewable dehydrogenase-based interfaces for bioelectronic applications. Langmuir 23:7127–7133

    Article  CAS  Google Scholar 

  50. Hassler BL, Amundsen TJ, Zeikus JG, Lee I, Worden RM (2008) Versatile bioelectronic interfaces on flexible non-conductive substrates. Biosens Bioelectron 23:1481–1487

    Article  CAS  Google Scholar 

  51. El-Kabbani O, Darmanin C, Chung RP (2004) Sorbitol dehydrogenase: structure, function and ligand design. Curr Med Chem 11:465–476

    Article  CAS  Google Scholar 

  52. Ruzicka J, Hansen EH (2008) Retro-review of flow-injection analysis. Trends Anal Chem 27:390–393

    Article  CAS  Google Scholar 

  53. Bilitewski U (2005) Biosensors for bioprocess monitoring. Compr Anal Chem 44:539–578

    Article  CAS  Google Scholar 

  54. Wu Q, Maskus M, Pariente F, Tobalina F, Fernandez VM, Lorenzo E, Abruna HD (1996) Electrocatalytic oxidation of NADH at glassy carbon electrodes modified with transition metal complexes containing 1,10-phenanthroline-5,6-dione ligands. Anal Chem 68:3688–3696

    Article  CAS  Google Scholar 

  55. Du P, Liu SN, Wu P, Cai CX (2007) Single-walled carbon nanotubes functionalized with poly(nile blue A) and their application to dehydrogenase-based biosensors. Electrochim Acta 53:1811–1823

    Article  CAS  Google Scholar 

  56. Liu SN, Cai CX (2007) Immobilization and characterization of alcohol dehydrogenase on single-walled carbon nanotubes and its application in sensing ethanol. J Electroanal Chem 602:103–114

    Article  CAS  Google Scholar 

  57. Zheng HT, Zhou JL, Zhang JM, Huang R, Jia HL, Suye S (2009) Electrical communication between electrode and dehydrogenase by a ferrocene-labeled high molecular-weight cofactor derivative: application to a reagentless biosensor. Microchim Acta 165:109–115

    Article  CAS  Google Scholar 

  58. Gessei T, Sato H, Kazawa E, Kudo H, Saito H, Mitsubayashi K (2009) Bio-sniffers for ethanol and acetaldehyde using carbon and Ag/AgCl coated electrodes. Microchim Acta 165:179–186

    Article  CAS  Google Scholar 

  59. Zhou HJ, Zhang ZP, Yu P, Su L, Ohsaka T, Mao LQ (2010) Noncovalent attachment of NAD(+) cofactor onto carbon nanotubes for preparation of integrated dehydrogenase-based electrochemical biosensors. Langmuir 26:6028–6032

    Article  CAS  Google Scholar 

  60. Chakraborty S, Raj CR (2007) Amperometric biosensing of glutamate using carbon nanotube based electrode. Electrochem Commun 9:1323–1330

    Article  CAS  Google Scholar 

  61. Campbell CE, Rishpon J (2001) NADH oxidation at the honey-comb like structure of active carbon: coupled to formaldehyde and sorbitol dehydrogenases. Electroanal 13:17–20

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial supports from projects VEGA 1/0066/09 and 1/0335/10; COST CM8T D43 and SAV-FM-EHP-2008-04-04 are acknowledged. This contribution/publication is the result of the project implementation: Centre for materials, layers and systems for applications and chemical processes under extreme conditions supported by the Research & Development Operational Program funded by the ERDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Tkac.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 523 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Šefčovičová, J., Filip, J., Tomčík, P. et al. A biopolymer-based carbon nanotube interface integrated with a redox shuttle and a D-sorbitol dehydrogenase for robust monitoring of D-sorbitol. Microchim Acta 175, 21–30 (2011). https://doi.org/10.1007/s00604-011-0641-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-011-0641-0

Keywords

Navigation