Skip to main content
Log in

Chitosan matrices modified with carbon nanotubes for use in mediated microbial biosensing

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We describe a microbial sensor based on Pseudomonas fluorescens cells that was prepared by modifying graphite electrodes with chitosan and carbon nanotubes. Chronoamperometry was performed at +0.3 V in the presence of hexacyanoferrate as a mediator and revealed a good response to glucose which is linear in the 1.0 to 5.0 mM concentration range. Linearity was defined by the equation of y = 102.120x−13.279 (R 2 = 0.998) (y shows current density as nA.cm−2 and x shows glucose concentration in mM). The effect of the CNTs on the response was compared to that of electrodes made without CNTs.

A mediated microbial sensor that was prepared by modifying graphite electrodes with chitosan and carbon nanotube and Pseudomonas fluorescens cells has been described. As well as some parameters (pH, mediator and cell amount etc), the effect of CNTs on the response was compared to that of electrodes made without CNTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wu BY, Hou SH, Yu M, Qin X, Li S, Chen Q (2009) Layer-by-layer assemblies of chitosan/multi-wall carbon nanotubes and glucose oxidase for amperometric glucose biosensor applications. Mat Sci Eng C 29:346

    Article  Google Scholar 

  2. Lin Y, Taylor S, Li H, Fernando KAS, Qu L, Wang W, Gu L, Zhou B, Sun YP (2004) Advances toward bioapplications of carbon nanotubes. J Mater Chem 14:527

    Article  CAS  Google Scholar 

  3. Rahman MM, Shiddiky MJ, Rahman MA, Shim YB (2009) A lactate biosensor based on lactate dehydrogenase/nictotinamide adenine dinucleotide (oxidized form) immobilized on a conducting polymer/multiwall carbon nanotube composite film. Anal Biochem 384:159

    Article  CAS  Google Scholar 

  4. Jeykumari DRS, Narayanan SS (2009) Functionalized carbon nanotubes-bienzyme biocomposite for amperometric sensing. Carbon 47:957

    Article  CAS  Google Scholar 

  5. Odaci D, Telefoncu A, Timur S (2008) Pyranose oxidase biosensor based on carbon nanotube (CNT)-modified carbon paste electrodes. Sensors Actuat B Chem 132:159

    Article  Google Scholar 

  6. Lin J, He C, Zhang L, Zhang S (2009) Sensitive amperometric immunosensor for α-fetoprotein based on carbon nanotube/gold nanoparticle doped chitosan film. Anal Biochem 384:130

    Article  CAS  Google Scholar 

  7. Yang M, Kostov Y, Rasooly A (2008) Carbon nanotubes based optical immunodetection of Staphylococcal Enterotoxin B (SEB) in food. Int J Food Microbiol 127:78

    Article  CAS  Google Scholar 

  8. Erdem A (2007) Nanomaterial-based electrochemical DNA sensing strategies. Talanta 74:318

    Article  CAS  Google Scholar 

  9. Odaci D, Timur S, Telefoncu A (2008) Bacterial sensors based on chitosan matrices. Sens Actuat B Chem 134:89

    Article  Google Scholar 

  10. Kirgoz UA, Timur S, Odaci D, Perez B, Alegret S, Merkoçi A (2007) Carbon nanotube composite as novel platform for microbial biosensor. Electroanal 19:893

    Article  CAS  Google Scholar 

  11. Timur S, Anik U, Odaci D, Gorton L (2007) Development of a microbial biosensor based on carbon nanotube (CNT) modified electrodes. Electrochem Commun 9:1810

    Article  CAS  Google Scholar 

  12. Qiu JD, Deng MQ, Liang RP, Xiong M (2008) Ferrocene-modified multiwalled carbon nanotubes as building block for construction of reagentless enzyme-based biosensors. Sensor Actuat B Chem 135:181

    Article  Google Scholar 

  13. Wang J, Liu G, Jan MR, Zhu Q (2003) Electrochemical detection of DNA hybridization based on carbon-nanotubes loaded with CdS tags. Electrochem Commun 5:1000

    Article  CAS  Google Scholar 

  14. Li Q, Kinloch IA, Windle AH (2005) Discrete dispersion of single-walled carbon nanotubes. Chem Commun 26:3283

    Article  Google Scholar 

  15. Jin HJ, Choi HJ, Yoon SH, Myung SJ, Shim SE (2005) Carbon nanotube-adsorbed polystyrene and poly(methyl methacrylate) microspheres. Chem Mater 17:4034

    Article  CAS  Google Scholar 

  16. Wu K, Sun Y, Hu S (2003) Development of an amperometric indole-3-acetic acid sensor based on carbon nanotubes film coated glassy carbon electrode. Sensors Actuat B Chem 96:658

    Article  Google Scholar 

  17. Rouse JH, Lillehei PT, Sanderson J, Siochi EJ (2004) Polymer/single-walled carbon nanotube films assembled via donor−acceptor ınteractions and their use as scaffolds for silica deposition. Chem Mater 16:3904

    Article  CAS  Google Scholar 

  18. Tkac J, Ruzgas T (2006) Dispersion of single walled carbon nanotubes. Comparison of different dispersing strategies for preparation of modified electrodes toward hydrogen peroxide detection. Electrochem Commun 8:899

    Article  CAS  Google Scholar 

  19. Liu JT, Chen X, Xin JH (2005) Decoration of carbon nanotubes with chitosan. Carbon 43:3178

    Article  CAS  Google Scholar 

  20. Gonchar M, Maidan M, Korpan Y, Sibirny V, Kotylak Z, Sibirny A (2002) Metabolically engineered methylotrophic yeast cells and enzymes as sensor biorecognition elements. FEMS Yeast Res 2:307

    CAS  Google Scholar 

  21. D’Souza SF (2001) Microbial biosensors. Biosens Bioelectron 16:337

    Article  Google Scholar 

  22. Pasco N, Baronian K, Jeffries C, Webber J, Hay J (2004) MICREDOX®-development of a ferricyanide-mediated rapid biochemical oxygen demand method using an immobilised Proteus vulgaris biocomponent. Biosens Bioelectron 20:524

    Article  CAS  Google Scholar 

  23. Kirgoz UA, Odaci D, Timur S, Merkoçi A, Pazarlıoğlu N, Telefoncu A, Alegret S (2006) Graphite epoxy composite electrodes modified with bacterial cells. Bioelectrochemistry 69:128

    Article  Google Scholar 

  24. Nakanishi K, Ikebukuro K, Karube I (1996) Determination of cyanide using a microbial sensor. Appl Biochem Biotech 60:97

    Article  CAS  Google Scholar 

  25. Valdman E, Battaglini F, Leite SGF, Valdman B (2004) Naphthalene detection by a bioluminescence sensor applied to wastewater samples. Sensors Actuat B Chem 103:7

    Article  Google Scholar 

  26. Odaci D, Sezginturk MK, Timur S, Pazarlioglu N, Pilloton R, Dinckaya E, Telefoncu A (2009) Pseudomonas putida based amperometric biosensors for 2,4-D detection. Prep Biochem Biotech 39:11

    Article  CAS  Google Scholar 

  27. Tkac J, Vostiar I, Gemeiner P, Sturdik E (2002) Monitoring of ethanol during fermentation using a microbial biosensor with enhanced selectivity. Biosens Bioelectron 56:127

    CAS  Google Scholar 

  28. Reshetilov AN, Trotsenko JA, Morozova NO, Iliasov PV, Ashin VV (2001) Characteristics of Gluconobacter oxydans B-1280 and Pichia methanolica MN4 cell based biosensors for detection of ethanol. Process Biochem 36:1015

    Article  CAS  Google Scholar 

  29. Du Z, Li H, Gu T (2007) A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol Adv 25:464

    Article  CAS  Google Scholar 

  30. Timur S, Odaci D, Dinçer A, Zihnioglu F, Telefoncu A (2008) Biosensing approach for glutathione detection using glutathione reductase and sulfhydryl oxidase bienzymatic system. Talanta 74:1492

    Article  CAS  Google Scholar 

  31. Balasubramanian K, Burghard M (2006) Biosensors based on carbon nanotubes. Anal Bioanal Chem 385:452

    Article  CAS  Google Scholar 

  32. Wang J (2004) Carbon-nanotube based electrochemical biosensors: a review. Electroanal 17:7

    Article  Google Scholar 

  33. Ghica ME, Brett CMA (2010) The influence of carbon nanotubes and polyazine redox mediators on the performance of amperometric enzyme biosensors. Microchim Acta 170:257

    Article  CAS  Google Scholar 

  34. Yang Q, Qu Y, Bo Y, Wen Y, Huang S (2010) Biosensor for atrazin based on aligned carbon nanotubes modified with glucose oxidase. Microchim Acta 168:197

    Article  CAS  Google Scholar 

  35. Chaubey A, Malhotra BD (2002) Mediated biosensors. Biosens Bioelectron 17:441

    Article  CAS  Google Scholar 

  36. Lei Y, Chen W, Mulchandanib A (2006) Microbial biosensors. Anal Chim Acta 568:200

    Article  CAS  Google Scholar 

  37. Yoshida N, Yano K, Morita T, McNiven SJ, Nakamura H, Karube I (2000) A mediator-type biosensor as a new approach to biochemical oxygen demand estimation. Analyst 125:2280

    Article  CAS  Google Scholar 

  38. Nakamura H, Suzuki K, Ishikuro H, Kinoshita S, Koizumi R, Okuma S, Gotoh M, Karube I (2007) A new BOD estimation method employing a double-mediator system by ferricyanide and menadione using the eukaryote Saccharomyces cerevisiae. Talanta 72:210

    Article  CAS  Google Scholar 

  39. Pasco N, Hay J, Scott A, Webber J (2005) Redox coupling to microbial respiration: an evaluation of secondary mediators as binary mixtures with ferricyanide. Aust J Chem 58:288

    Article  CAS  Google Scholar 

  40. Rivas GA, Rubianes MD, Rodriguez MC, Ferreyra NF, Luque GL, Pedano ML, Miscoria SA, Parrado C (2007) Carbon nanotubes for electrochemical biosensing. Talanta 74:291

    Article  CAS  Google Scholar 

  41. Zhang M, Gorski W (2005) Electrochemical sensing platform based on the carbon nanotubes/redox mediators-biopolymer system. J Am Chem Soc 127:2058

    Article  CAS  Google Scholar 

  42. Liu S, Yu J, Ju H (2003) Renewable phenol biosensor based on a tyrosinase-colloidal gold modified carbon paste electrode. Electroanal Chem 540:61

    Article  CAS  Google Scholar 

  43. Su L, Jia W, Hou C, Lei Y (2011) Microbial biosensors: a review. Biosens Bioelectron 26:1788

    Article  CAS  Google Scholar 

Download references

Acknowledgement

Ege University Research Foundation (project number: 2010 FEN 001) is acknowledged for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dilek Odaci Demirkol or Suna Timur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Demirkol, D.O., Timur, S. Chitosan matrices modified with carbon nanotubes for use in mediated microbial biosensing. Microchim Acta 173, 537–542 (2011). https://doi.org/10.1007/s00604-011-0596-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-011-0596-1

Keywords

Navigation