Skip to main content
Log in

FAAS slurry analysis of lead and copper ions preconcentrated on titanium dioxide nanoparticles coated with a silver shell and modified with cysteamine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on the separation and preconcentration of lead(II) and copper(II) ions using silver-coated titanium dioxide nanoparticles modified with cysteamine, and their determination by slurry analysis via flame atomic absorption spectrometry. The ions were adsorbed via a conventional batch technique, and the ion-loaded slurry was separated and directly introduced into the spectrometer, thereby eliminating a number of drawbacks. The effects of pH, amount of sorbent, slurry volume, sample volume and other ions on the recovery were investigated. Under optimized experimental conditions, copper and lead can be recovered within the 95% confidence level in certificated waste water, but also in spiked sea water samples. The technique is fast, simple, and leads to complete elution. The limit of detection (3δ, at n = 10) was 0.37 μg L−1 for Cu(II), and 0.38 μg L−1 for Pb(II).

We report on the separation and preconcentration of lead(II) and copper(II) ions using silver-coated titanium dioxide nanoparticles modified with cysteamine (Fig. 1), and their determination by slurry analysis via flame atomic absorption spectrometry. Under optimized experimental conditions, copper and lead can be recovered within the 95% confidence level in certificated waste water and spiked sea water samples. The technique is fast, simple, and leads to complete elution. Figure 1. Schematic illustration of the preparation of TiO2@Ag–Cysteamine nanoparticles and inset shows the color of the nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tokman N, Akman S (2004) Determination of bismuth and cadmium after solid phase extraction with chromosorb-107 in a syringe. Anal Chim Acta 519:87–91. doi:10.1016/j.aca.2004.05.082

    Article  CAS  Google Scholar 

  2. Camel V (2003) Solid phase extraction of trace elements: a review. Spectrochim Acta B 58:1177–1233. doi:10.1016/S0584-8547(03)00072-7

    Article  Google Scholar 

  3. Bakircioglu Y, Bakircioglu D, Akman S (2003) Solid phase extraction of bismuth and chromium by rice husk. J Trace Microprobe Tech 21:467–478. doi:10.1081/TMA-120023063

    Article  CAS  Google Scholar 

  4. Wuilloud RG, Salonia JA, Gasquez JA, Olsina RA, Martinez ND (2000) On-line preconcentration system for vanadium determination in drinking water using flow injection–inductively coupled plasma atomic emission spectrometry. Anal Chim Acta 420:73–79. doi:10.1016/S0584-8547(00)00215-9

    Article  CAS  Google Scholar 

  5. Akman S, Ince H, Koklu U (1992) Determination of some trace elements in sea-water by atomic absorption spectrometry after concentration with modified silicas. J Anal Atom Spectrom 7:187–189

    Article  CAS  Google Scholar 

  6. Imamoglu M, Aydin AO, Dundar MS (2005) Determination of gold, palladium and copper by flame atomic absorption spectrometry after preconcentration on silica gel modified with 3-(2-aminoethylamino)propyl group. Cent Eur J Chem 3:252–262, ids: 947CG

    Article  CAS  Google Scholar 

  7. Jal PK, Patel S, Mishra BK (2004) Chemical modification of silica surface by immobilization of functional groups for extractive concentration of metal ions. Talanta 62:1005–1028. doi:10.1016/j.talanta.2003.10.028

    Article  CAS  Google Scholar 

  8. Matoso E, Kubota LT, Cadore S (2003) Use of silica gel chemically modified with zirconium phosphate for preconcentration and determination of lead and copper by flame atomic absorption spectrometry. Talanta 60:1105–1111. doi:10.1016/S0039-9140(03)00215-7

    Article  CAS  Google Scholar 

  9. Wu Q, Chang X, He Q, Zhai Y, Cui Y, Huang X (2008) Silica gel modified with diaminothiourea as selective solid-phase extractant for determination of Hg(II) in biological and natural water samples. Int J Environ Anal Chem 88:245–254. doi:10.1080/03067310701648278

    Article  CAS  Google Scholar 

  10. Akman S, Ozcan M, Demirel E (2002) Use of a syringe-mountable filter resin technique for the separation and enrichment of lead and cadmium prior to their determination by flame atomic absorption spectrometry. J Anal At Spectrom 17:743–745. doi:10.1039/b202448a

    Article  CAS  Google Scholar 

  11. Senturk HB, Gundogdu A, Bulut VN, Duran C, Soylak M, Elci L, Tufekci M (2007) Separation and enrichment of gold(III) from environmental samples prior to its flame atomic absorption spectrometric determination. J Hazard Mater 149:317–323. doi:10.1016/j.jhazmat.2007.03.083

    Article  CAS  Google Scholar 

  12. Bakircioglu Y, Seren G, Akman (2000) Concentration of cadmium, copper and zinc using water soluble polyacrylic acid polymer. Spectrochim Acta B 55:1129–1133. doi:10.1016/S0584-8547(00)00226-3

    Article  Google Scholar 

  13. Nukatsuka I, Seitoh H, Ozeki K (2004) Solid phase extraction with slurry injection of the resin into FAAS for trace determination of thallium in mineral water. Microchim Acta 148:177–182. doi:10.1007/s00604-004-0284-5

    Article  CAS  Google Scholar 

  14. Baysal A, Tokman N, Akman S (2008) The use of solid-phase extraction and direct injection of a copolymer sorbent as slurry into the graphite furnace prior to determination of cadmium by ETAAS. Environ Anal Chem 88:141–150. doi:10.1080/03067310701596964

    Article  CAS  Google Scholar 

  15. Zhang Q, Minami H, Imoue S, Atsuya I (2001) Preconcentration by coprecipitation of arsenic and tin in natural waters with a Ni-pyrrolidine dithiocarbamate complex and their direct determination by solid-sampling atomic-absorption spectrometry. Fresenius J Anal Chem 370:860–864. doi:10.1007/s002160100857

    Article  CAS  Google Scholar 

  16. Baysal A, Akman S, Calisir F (2008) A novel slurry sampling analysis of lead in different water samples by electrothermal atomic absorption spectrometry after coprecipitated with cobalt/pyrrolidine dithiocarbamate complex. J Hazard Mater 158:454–459. doi:10.1016/j.jhazmat.2008.01.090

    Article  CAS  Google Scholar 

  17. Zhang Q, Minami H, Inoue S, Atsuya I (1999) Preconcentration by coprecipitation of chromium in natural waters with Pd/8-quinolinol/tannic acid complex and its direct determination by solid-sampling atomic absorption spectrometry. Anal Chim Acta 401:277–282. doi:10.1016/S0003-2670(99)00485-7

    Article  CAS  Google Scholar 

  18. Alves FL, Cadore S, Jardim WF, Arruda MAZ (2001) River sediment analysis by slurry sampling FAAS: determination of copper, zinc and lead. J Braz Chem Soc 12:799–803. doi:10.1590/S0103-50532001000600018

    Article  CAS  Google Scholar 

  19. DeAlmeida MD, Leandro KC, DaCosta CV, Santelli RE, DelaGuardia M (1997) Flow injection microwave-assisted dissolution of silicate rocks for magnesium determination by flame atomic absorption spectrometry. J Anal At Spectrom 12:1235–1238. doi:10.1039/A703298F

    Article  CAS  Google Scholar 

  20. Pereira ER, Berndt H, Arruda MAZ (2002) Simultaneous sample digestion and determination of Cd, Cu and Pb in biological samples using thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) with slurry sample introduction. J Anal At Spectrom 17:1308–1315. doi:10.1039/B202828J

    Article  Google Scholar 

  21. Araujo RGO, Dias FS, Macedo SM, dos Santos WNL, Ferreira SLC (2007) Method development for the determination of manganese in wheat flour by slurry sampling flame atomic absorption spectrometry. Food Chem 101:397–400. doi:10.1016/j.foodchem.2005.10.024

    Article  CAS  Google Scholar 

  22. Baysal A, Kahraman M, Akman S (2009) The solid phase extraction of lead using silver nanoparticles—attached to silica gel prior to its determination by FAAS. Curr Anal Chem 5:352–357. doi:10.2174/157341109789077740

    Article  CAS  Google Scholar 

  23. Afzali D, Mostafavi A, Beitollah H (2010) Application of organo-nanoclay as a solid sorbent for rhodium complex separation and preconcentration. Microchim Acta 171:97–102. doi:10.1007/s00604-010-0405-2

    Article  CAS  Google Scholar 

  24. Gunduz S, Akman S, Kahraman M (2010) Slurry analysis of cadmium and copper collected on 11-mercaptoundecanoic acid modified TiO2 core-Au shell nanoparticles by flame atomic absorption spectrometry. J Hazard Mater. doi:10.1016/j.jhazmat.2010.10.103

    Google Scholar 

  25. Ding Q, Liang P, Song F, Xiang A (2006) Separation and preconcentration of silver ıon using multiwalled carbon nanotubes as solid phase extraction sorbent. Sep Sci Technol 41:2723–2732. doi:10.1080/01496390600725844

    Article  CAS  Google Scholar 

  26. Tuzen M, Soylak M (2007) Multiwalled carbon nanotubes for speciation of chromium in environmental samples. J Hazard Mater 147:219–225. doi:10.1016/j.jhazmat.2006.12.069

    Article  CAS  Google Scholar 

  27. Suleiman JS, Hu B, Pu X, Huang C, Jiang Z (2007) Nanometer-sized zirconium dioxide microcolumn separation/preconcentration of trace metals and their determination by ICP-OES in environmental and biological samples. Microchim Acta 159:379–385. doi:10.1007/s00604-007-0742-y

    Article  Google Scholar 

  28. Zheng H, Chang X, Lian N, Wang S, He Q, Lai S (2005) Sulfanilamide-modified nanometer-sized TiO2 microcolumn for the enrichment of trace Cr(III) and Pb(II). Ann Chim Rome 95:601–606. doi:10.1002/adic.200590069

    Article  CAS  Google Scholar 

  29. Lui R, Liang P (2008) Determination of trace lead in water samples by graphite furnace atomic absorption spectrometry after preconcentration with nanometer titanium dioxide immobilized on silica gel. J Hazard Mater 152:166–171. doi:10.1016/j.jhazmat.2007.06.081

    Article  Google Scholar 

  30. Qıng Y, Hang Y, Wanjaul R, Jıang Z, Hu B (2003) Adsorption behavior of noble metal ıons (Au, Ag, Pd) on nanometer-size titanium dioxide with ICP-AES. Anal Sci 19:1417–1420, issn: 0910–6340

    Article  Google Scholar 

  31. Liang P, Yang L, Hu B, Jiang Z (2003) ICP-AES detection of ultratrace aluminum(III) and chromium(III) ıons with a microcolumn preconcentration system using dynamically ımmobilized 8-hydroxyquinoline on TiO2 nanoparticles. Anal Sci 19:1167–1171, ids: 712WE

    Article  CAS  Google Scholar 

  32. Cui Y, Chang X, Zhu X, Jiang N, Hu Z, Lian N (2007) Nanometer SiO2 modified with 5-sulfosalicylic acid as selective solid-phase extractant for Fe(III) determination by ICP-AES from biological and natural water samples. Microchem J 86:23–28. doi:10.1016/j.microc.2006.09.002

    Article  CAS  Google Scholar 

  33. Kamat PV, Flumiani M, Dawson A (2002) Metal–metal and metal–semiconductor composite nanoclusters. Colloids Surf, A 202:269–279. doi:10.1021/jp9709464

    Article  CAS  Google Scholar 

  34. Haiss W, Thanh NTK, Aveyard J, Fernig DG (2007) Determination of size and concentration of gold nanoparticles from UV–Vis spectra. Anal Chem 79:4215–4221. doi:10.1021/ac800834n

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suleyman Akman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baysal, A., Saatci, A.D., Kahraman, M. et al. FAAS slurry analysis of lead and copper ions preconcentrated on titanium dioxide nanoparticles coated with a silver shell and modified with cysteamine. Microchim Acta 173, 495–502 (2011). https://doi.org/10.1007/s00604-011-0586-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-011-0586-3

Keywords

Navigation