Skip to main content
Log in

Glassy carbon electrode modified with poly-Neutral Red for photoelectrocatalytic oxidation of NADH

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A new approach is described for the photoelectrocatalytic oxidation of Reduced ß-Nicotinamide Adenine Dinucleotide (NADH). It is based on a glassy carbon electrode (GCE) modified with a film of poly-Neutral Red (poly-NR) that is obtained by electropolymerization. Electrochemical measurements revealed that the modified electrode displays electrocatalytic and photo-electrocatalytic activity towards oxidation of NADH. If irradiated with a 250-W halogen lamp, the electrode yields a strongly increased electrocatalytic current compared to the current without irradiation. Amperometric and photo-amperometric detection of NADH was performed at +150 mV vs. Ag/AgCl/KClsat and the currents obtained are linearly related to the concentration of NADH. Linear calibration plots are obtained in the concentration range from 1.0 μM to 1.0 mM for both methods. However, the slope of the current-NADH concentration curve of the photo-electrocatalytic procedure was 2-times better than that obtained without irradiation.

A poly-Neutral Red modified glassy carbon electrode (poly-NR/GCE) was prepared by electropolymerization process. This modified electrode displays electrocatalytic and also photoelectrocatalytic activity towards oxidation of NADH. Compared with electrocatalytic oxidation of NADH, the current response was increased about 2.0 times in the photoelectrocatalytic oxidation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gorton L, Bartlett PN (2008) In: Bartlett PN (ed) Bioelectrochemistry. fundamentals, experimental techniques and applications. Wiley, West Sussesx-England, pp 157–198

    Google Scholar 

  2. Gorton L, Dominguez E (2002) Electrochemistry of NAD(P)+/NAD(P). In: Bard AJ, Stratmann M (eds) Encyclopaedia of Electrochemistry Vol. 9, Bioelectrochemistry. In: Wilson GS (ed) Wiley-VCH, Weinheim.

  3. Gorton L (1986) Chemically modified electrodes for the electrocatalytic oxidation of nicotinamide coenzymes. J Chem Soc Faraday Trans 1(82):1245–1258

    Google Scholar 

  4. Katakis I, Dominguez E (1997) Catalytic electrooxidation of NADH for dehydrogenase amperometric biosensors. Microchim Acta 126:11–32

    Article  CAS  Google Scholar 

  5. Lobo MJ, Miranda AJ, Tunon P (1997) Amperometric biosensors based on NAD(P)-dependent dehydrogenase enzymes. Electroanalysis 9:191–202

    Article  CAS  Google Scholar 

  6. Itoh S, Kinugawa M, Mita N, Ohshiro Y (1989) Efficient NAD+-regeneration system with heteroaromatic ortho-quinones and molecular-oxygen. J Chem Soc Chem Commun 11:694–695

    Article  Google Scholar 

  7. Palmore GTR, Bertschy H, Bergens SH, Whitesides GM (1998) A methanol/dioxygen biofuel cell that uses NAD(+)-dependent dehydrogenases as catalysts: application of an electro-enzymatic method to regenerate nicotinamide adenine dinucleotide at low overpotentials. J Electroanal Chem 443:155–161

    Article  CAS  Google Scholar 

  8. Degrand C, Miller LL (1980) An electrode modified with polymer-bound dopamine which catalyzes NADH oxidation. J Am Chem Soc 102:5728–5732

    Article  CAS  Google Scholar 

  9. Gorton L, Persson B, Hale PD, Boguslavsky LI, Karan HI, Lee HS, Skotheim TA, Lan HL, Okamoto Y (1992) Electrocatalytic oxidation of nicotinamide adenine-dinucleotide cofactor at chemically modified electrodes. ACS Symp Ser 487:56–83

    Article  CAS  Google Scholar 

  10. Karyakin AA, Karyakina EE, Schuhmann W, Schmidt H-L, Varfolomeyev SD (1994) New amperometric dehydrogenase electrodes based on electrocatalytic NADH-oxidation at poly(methylene blue)-modified electrodes. Electroanalysis 6:821–829

    Article  CAS  Google Scholar 

  11. Pariente F, Tobalina F, Darder M, Lorenzo E, Abruna HD (1996) Electrodeposition of redox-active films of dihydroxybenzaldehydes and related analogs and their electrocatalytic activity toward NADH oxidation. Anal Chem 68:3135–3142

    Article  CAS  Google Scholar 

  12. Grundig B, Wittstock G, Rudel U, Strehlitz B (1995) Mediator-modified electrodes for electrocatalytic oxidation of NADH. J Electroanal Chem 395:143–157

    Article  Google Scholar 

  13. Persson B, Lee HS, Gorton L, Skotheim T, Bartlett P (1995) Redox polymers for electrocatalytic oxidation of NADH - a random block methyl-siloxane polymer containing meldola blue. Electroanalysis 10:935–940

    Article  Google Scholar 

  14. Gorton L, Torstensson A, Jaegfeldt H, Johansson G (1984) Electrocatalytic oxidation of reduced nicotinamide coenzymes by graphite-electrodes modified with an adsorbed phenoxazinium salt, meldola blue. J Electroanal Chem 161:103–120

    Article  CAS  Google Scholar 

  15. Gorton L, Johansson G, Torstensson A (1985) A kinetic-study of the reaction between dihydronicotinamide adenine-dinucleotide (NADH) and an electrode modified by adsorption of 1,2-benzophenoxazine-7-one. J Electroanal Chem 196:81–92

    Article  CAS  Google Scholar 

  16. Persson B, Gorton L (1990) A comparative-study of some 3,7-diaminophenoxazine derivatives and related-compounds for electrocatalytic oxidation of NADH. J Electroanal Chem 292:115–138

    Article  CAS  Google Scholar 

  17. Torstensson A, Gorton L (1981) Catalytic-oxidation of NADH by surface-modified graphite-electrodes. J Electroanal Chem 130:199–207

    CAS  Google Scholar 

  18. Chen H-Y, Zhou D-M, Xu J-J, Fang H-Q (1997) Electrocatalytic oxidation of NADH at a gold electrode modified by thionine covalently bound to self-assembled cysteamine monolayers. J Electroanal Chem 422:21–25

    Article  CAS  Google Scholar 

  19. Zhou D-M, Fang H-Q, Chen H-Y, Ju H-X, Wang Y (1996) The electrochemical polymerization of methylene green and its electrocatalysis for the oxidation of NADH. Anal Chim Acta 329:41–48

    Article  CAS  Google Scholar 

  20. Cai C-X, Xue K-H (1998) Electrochemical polymerization of toluidine blue o and its electrocatalytic activity toward NADH oxidation. Talanta 47:1107–1119

    Article  CAS  Google Scholar 

  21. Dicu D, Muresan L, Popescu IC, Cristea C, Silberg IA, Brouant P (2000) Modified electrodes with new phenothiazine derivatives for electrocatyltic oxidation of NADH. Electrochim Acta 45:3951–3957

    Article  CAS  Google Scholar 

  22. Dilgin Y, Gorton L, Nişli G (2007) Photoelectrocatalytic oxidation of NADH with electropolymerized Toluidine Blue O. Electroanalysis 19:286–293

    Article  CAS  Google Scholar 

  23. Karyakin AA, Karyakina EE, Schuhmann W, Schmidt HL (1999) Electropolymerized azines: Part II. In a search of the best electrocatalyst of NADH oxidation. Electroanalysis 11:553–557

    Article  CAS  Google Scholar 

  24. Jaegfeldt H, Kuwana T, Johansson G (1983) Electrochemical stability of catechols with a pyrene side-chain strongly adsorbed on graphite-electrodes for catalytic-oxidation of dihydronicotinamide adenine-dinucleotide. J Am Chem Soc 105:1805–1814

    Article  CAS  Google Scholar 

  25. Essaadi K, Keita B, Nadjo L, Contant R (1994) Oxidation of NADH by oxometalates. J Electroanal Chem 367:275–278

    Article  CAS  Google Scholar 

  26. Lorenzo E, Sanchez L, Pariente F, Tirado J, Abruña HD (1995) Thermodynamics and kinetics of adsorption and electrocatalysis of NADH oxidation with a self-assembling quinone derivative. Anal Chim Acta 309:79–88

    Article  CAS  Google Scholar 

  27. Lobo MJ, Miranda AJ, Lopez-Fonseca JM, Tunon P (1996) Electrocatalytic detection of nicotinamide coenzymes by poly(o-aminophenol)- and poly(o-phenylenediamine)-modified carbon paste electrodes. Anal Chim Acta 325:33–42

    Article  CAS  Google Scholar 

  28. Bartlett PN, Birkin PR, Wallace ENK (1997) Oxidation of beta-nicotinamide adenine dinucleotide (NADH) at poly(aniline)-coated electrodes. J Chem Soc Faraday Trans 93:1951–1960

    Article  CAS  Google Scholar 

  29. Schuhmann W, Lammert R, Haemmerle M, Schmidt HL (1991) Electrocatalytic properties of polypyrrole in amperometric electrodes. Biosens Bioelectron 6:689–697

    Article  CAS  Google Scholar 

  30. Katz E, Lötzbeyer T, Schlereth DD, Schuhmann W, Schmidt HL (1994) Electrocatalytic oxidation of reduced nicotinamide coenzymes at gold and platinum-electrode surfaces modified with a monolayer of pyrroloquinoline quinone - effect of Ca2+ cations. J Electroanal Chem 373:189–200

    Article  CAS  Google Scholar 

  31. Vidal J-C, Garcia-Ruiz E, Castillo JR (2003) Recent advances in electropolymerized conducting polymers in amperometric biosensors. Microchim Acta 143:93–111

    Article  CAS  Google Scholar 

  32. Wang GL, Xu JJ, Chen HY (2009) Dopamine sensitized nanoporous TiO2 film on electrodes: Photoelectrochemical sensing of NADH under visible irradiation. Biosens Bioelectron 24:2494–2498

    Article  CAS  Google Scholar 

  33. Gligor D, Dilgin Y, Popescu IC, Gorton L (2009) Photoelectrocatalytic oxidation of NADH at a graphite electrode modified with a new polymeric phenothiazine. Electroanalysis 21:360–367

    Article  CAS  Google Scholar 

  34. Dilgin DG, Gligor D, Gökçel Hİ, Dursun Z, Dilgin Y (2010) Photoelectrocatalytic oxidation of NADH in a flow injection analysis system using a poly-hematoxylin modified glassy carbon electrode. Biosens Bioelectron 26:411–417

    Article  CAS  Google Scholar 

  35. Gligor D, Dilgin Y, Popescu IC, Gorton L (2009) Poly-phenothiazine derivative-modified glassy carbon electrode for NADH electrocatalytic oxidation. Electrochim Acta 54:3124–3128

    Article  CAS  Google Scholar 

  36. Gligor D, Balaj F, Maicaneanu A, Gropeanu R, Grosu I, Muresan L, Popescu IC (2009) Carbon paste electrodes modified with a new phenothiazine derivative adsorbed on zeolite and on mineral clay for NADH oxidation. Mater Chem Phys 113:283–289

    Article  CAS  Google Scholar 

  37. Kubota LT, Gorton L (1999) Electrochemical study of flavins, phenazines, phenoxazines and phenothiazines immobilized on zirconium phosphate. Electroanalysis 11:719–728

    Article  CAS  Google Scholar 

  38. Bauldreay JM, Archer MD (1983) Mediated redox reactions at the 1-aminophenazine-modified rotating-disk electrode. Electrochim Acta 28:1515–1522

    Article  CAS  Google Scholar 

  39. Chen CX, Gao YH (2007) Electrochemical polymerization of neutral red in the presence of sulfoferrocenecarboxylic acid. Polymer 48:5572–5580

    Article  CAS  Google Scholar 

  40. Karyakin AA, Bobrova OA, Karyakina EE (1995) Electroreduction of NAD(+) to enzymatically active NADH at poly(neutral red) modified electrodes. J Electroanal Chem 399:179–184

    Article  Google Scholar 

  41. Barsan MM, Pinto EM, Brett CMA (2008) Electrosynthesis and electrochemical characterisation of phenazine polymers for application in biosensors. Electrochim Acta 53:3973–3982

    Article  CAS  Google Scholar 

  42. Lu B, Bai J, Bo X, Yang L, Guo L (2010) Electrosynthesis and efficient electrocatalytic performance of poly(neutral red)/ordered mesoporous carbon composite. Electrochim Acta 55:4647–4652

    Article  CAS  Google Scholar 

  43. Chen CX, Gao YH (2007) Electrosynthesis of poly(neutral red), a polyaniline derivative. Electrochim Acta 52:3143–3148

    Article  CAS  Google Scholar 

  44. Chen SH, Lin KC (2001) The electrocatalytic properties of polymerized neutral red film modified electrodes. J Electroanal Chem 511:101–114

    Article  CAS  Google Scholar 

  45. Broncová G, Shishkanova TV, Matejka P, Volf R, Král V (2004) Citrate selectivity of poly(neutral red) electropolymerized films. Anal Chim Acta 511:197–205

    Article  Google Scholar 

  46. Cooper JA, Wu M, Compton RG (1998) Photoelectrochemical analysis of ascorbic acid. Anal Chem 70:2922–2927

    Article  CAS  Google Scholar 

  47. Cooper JA, Woodhouse KE, Chippindale AM, Compton RG (1999) Photoelectrochemical determination of ascorbic acid using methylene blue immobilized in alpha-zirconium phosphate. Electroanalysis 11:1259–1265

    Article  CAS  Google Scholar 

  48. Dilgin Y, Dilgin DG, Dursun Z, Gökçel Hİ, Gligor D, Bayrak B, Ertek B (2011) Photoelectrocatalytic determination of NADH in a flow injection system with electropolymerized methylene blue. Electrochim Acta 56:1136–1143

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Scientific and Technological Research Council of Turkey TUBITAK (Project No. 107T572) and The National Authority for Scientific Research of Romania ANCS (Project no. 75CB/18.07.2008) for financial support. Y. Dilgin would like to thank Çanakkale Onsekiz Mart University Scientific Research Project Commission Fund for partially supporting of this work with a project (COMU BAP 2009/15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuf Dilgin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dilgin, D.G., Gligor, D., Gökçel, H.İ. et al. Glassy carbon electrode modified with poly-Neutral Red for photoelectrocatalytic oxidation of NADH. Microchim Acta 173, 469–476 (2011). https://doi.org/10.1007/s00604-011-0582-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-011-0582-7

Keywords

Navigation