Skip to main content
Log in

Sensitive DNA-hybridization biosensors based on gold nanoparticles for testing DNA damage by Cd(II) ions

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A DNA biosensor was constructed by immobilizing a 20-mer oligonucleotide probe and hybridizing it with its complementary oligomer on the surface of a glassy carbon electrode modified with gold nanoparticles. The properties of the biosensor and its capability of recognizing its complementary sequence were studied by electrochemical impedance spectroscopy. The oxidative stress caused by cadmium ions can be monitored by differential pulse voltammetry using the cobalt(III)tris(1,10-phenanthroline) complex and methylene blue as electrochemical indicators. The biosensor is capable of indicating damage caused by Cd(II) ions in pH 6.0 solution. The results showed that the biosensor can be used for rapid screening for DNA damage.

DPV of DNA biosensors before (a, c) and after hybridization (b, d) at 1.0 ×10–7 mol·L-1target DNA concentration, (a) probe DNA/Au/GCE and (b) dsDNA/Au/GCE (c) probe DNA/GCE, (d) dsDNA/GCE

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Manca D, Richard AC, Trottier B, Chevalier G (1991) Studies on lipid peroxidation in rats tissues following administration of cadmium chloride. Toxicology 67:303

    Article  CAS  Google Scholar 

  2. Bertin G, Averbeck D (2006) Cadmium: cellular effects, modifications of biomolecules, modulation of DNA repair and genotoxic consequences (a review). Biochimie 88:1549

    Article  CAS  Google Scholar 

  3. Galazyn-Sidorczuk M, Brzȯska MM, Jurczuk M, Moniuszko-Jakoniuk J (2009) Oxidative damage to proteins and DNA in rats exposed to cadmium and/or ethanol. Chem Biol Interact 180:31

    Article  CAS  Google Scholar 

  4. Lin AJ, Zhang XH, Chen MM, Cao Q (2007) Oxidative stress and DNA damages induced by cadmium accumulation. J Environ Sci 19:596

    Article  CAS  Google Scholar 

  5. Valko CJ M, Rhodes J, Moncol IM, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1

    Article  Google Scholar 

  6. Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R (2003) Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta 329:23

    Article  CAS  Google Scholar 

  7. Cooke MS, Olinski R, Evans MD (2006) Does measurement of oxidative damage to DNA have clinical significance. Clin Chim Acta 365:30

    Article  CAS  Google Scholar 

  8. Dotan Y, Lichtenberg D, Pinchuk I (2004) Lipid peroxidation cannot be used as universal criterion of oxidative stress. Prog Lipid Res 43:200

    Article  CAS  Google Scholar 

  9. Weinfel M, Liuzzi M, Paterson MC (1990) Response of phage T4 polynucleotide kinase toward dinucleotides containing apurinic sites: design of a 32 P-postlabeling assay for apurinic sites in DNA. Biochemistry 29:1737

    Article  Google Scholar 

  10. Wild CP (1990) Antibodies to DNA alkylation adducts as analytical tools in chemical carcinogenesis. Mutat Res 233:219

    CAS  Google Scholar 

  11. Park JW, Ames BN (1988) 7-Methylguanine adducts in DNA are normally present at high levels and increase on aging: analysis by HPLC with electrochemical detection. Proc Natl Acad Sci 85:7467

    Article  CAS  Google Scholar 

  12. Angelis KJ, McGuffie M, Menke M, Schubert I (2000) Adaptation to alkylation damage in DNA measured by the comet assay. Environ Mol Mutagen 36:146

    Article  CAS  Google Scholar 

  13. Pacey GE, Puckett SD, Cheng L, Khatib-Shahidi S, Cox JA (2005) Detection of DNA damaging agents using layer-by-layer assembly. Anal Chim Acta 533:135

    Article  CAS  Google Scholar 

  14. Liang M, Guo LH (2007) Photoelectrochemical DNA sensor for the rapid detection of DNA damage induced by styrene oxide and the fenton reaction. Environ Sci Technol 41:658

    Article  CAS  Google Scholar 

  15. Wang J (2002) Electrochemical nucleic acid biosensors. Anal Chim Acta 469:63

    Article  CAS  Google Scholar 

  16. Paleček E (2002) Past, present and future of nucleic acids electrochemistry. Talanta 56:809

    Article  Google Scholar 

  17. Qiu YY, Fan H, Liu X, Ai SY, Tang TT, Han RX (2010) Electrochemical detection of DNA damage induced by in situ generated bisphenol A radicals through electro-oxidation. Microchim Acta 171:363

    Article  CAS  Google Scholar 

  18. Qian P, Ai SY, Yin HS, Li JH (2010) Evaluation of DNA damage and antioxidant capacity of sericin by a DNA electrochemical biosensor based on dendrimer-encapsulated Au-Pd/chitosan composite. Microchim Acta 168:347

    Article  CAS  Google Scholar 

  19. Ting BP, Zhang J, Gao Z, Ying JY (2009) A DNA biosensor based on the detection of doxorubicin-conjugated Ag nanoparticle labels using solid-state voltammetry. Biosens bioelectron 25:282

    Article  CAS  Google Scholar 

  20. Gao HW, Zhong JH, Qin P, Lin C, Sun W (2009) Microplate electrochemical DNA detection for phosphinothricin acetyltransferase gene sequence with cadmium sulfide nanoparticles. Microchem J 93:78

    Article  CAS  Google Scholar 

  21. Labuda J, Ovádeková R, Galandová J (2009) DNA-based biosensor for the detection of strong damage to DNA by the quinazoline derivative as a potential anticancer agent. Microchim Acta 164:371

    Article  CAS  Google Scholar 

  22. Kerman K, Meric B, Dzkan D, Kara P, Erdem A, Ozsoz M (2001) Electrochemical DNA biosensor for the determination of benzo[a]pyrene–DNA adducts. Anal Chim Acta 450:45

    Article  CAS  Google Scholar 

  23. Lopez E, Arce C, Oset-Gasque MJ (2006) Cadmium induces reactive oxygen species generation and lipid peroxidation in cortical neurons in culture. Free Radic Biol Med 40:940

    Article  CAS  Google Scholar 

  24. Pathak N, Khandelwal S (2006) Oxidative stress and apoptotic changes in murine splenocytes exposed to cadmium. Toxicology 220:26

    Article  CAS  Google Scholar 

  25. Huff J, Lunn RM, Waalkes MP, Tomatis L, Infante PF (2007) Cadmium-induced cancers in animals and in humans. Int J Occup Environ Health 13:202

    CAS  Google Scholar 

  26. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M (2006) Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 160:1

    Article  CAS  Google Scholar 

  27. Yoshioka N, Nakashima H, Hosoda K, Eitaki Y, Shimada N, Omae K (2008) Urinary excretion of an oxidative stress marker, 8-hydroxyguanine (8-OH-Gua), among nickel-cadmium battery workers. J Occup Health 50:229

    Article  CAS  Google Scholar 

  28. Yang WR, Ozsoz M, Hibbert DB, Gooding JJ (2002) Evidence for the direct interaction between methylene blue and guanine bases using DNA-modified carbon paste electrodes. Electroanalysis 14:1299

    Article  CAS  Google Scholar 

  29. Wang XL, Jiao K (2010) Sensitively electrochemical detection of the DNA damage in situ by electro-Fenton reaction based on Fe@Fe2O3 core-shell nanonecklace and multi-walled carbon nanotube composite. Anal Chim Acta 664:34

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the National Natural Science Foundation of China (Grant No. 20775002) for financial support. The work was supported by the Program for Innovative Research Team in Anhui Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhousheng Yang.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Fig. S1

Nyquist diagrams recorded at the probe DNA/Au/GCE (a) and after hybridization reaction with different concentrations of sequence- specific DNA of PAT gene: (b) 1.0 × 10−12 mol.L−1, (c) 1.0 × 10−11 mol.L−1, (d) 1.0 × 10−10 mol.L−1, (e) 1.0 × 10−9 mol.L−1, (f) 1.0 × 10−8 mol.L−1, (g) 1.0 × 10−7 mol.L−1 and (h) 1.0 × 10−6 mol.L−1. (DOC 554 kb)

Fig. S2

Nyquist diagrams recorded of dsDNA/nano- Au/GCE in 5.0 mmol.L−1 pH 6.0 Tris–HCl buffer solution after damaged by 0.02 mmol.L−1 Cd2+ for different time: 0 min, 10 min, 20 min, 30 min,50 min (a→e). (DOC 475 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Q., Dai, P. & Yang, Z. Sensitive DNA-hybridization biosensors based on gold nanoparticles for testing DNA damage by Cd(II) ions. Microchim Acta 173, 347–352 (2011). https://doi.org/10.1007/s00604-011-0558-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-011-0558-7

Keywords

Navigation