Skip to main content
Log in

Multisyringe ion chromatography with chemiluminescence detection for the determination of oxalate in beer and urine samples

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The first multisyringe-based low-pressure ion chromatographic method is presented. It is based on the use of short surfactant coated octadecyl-silica monolithic columns. As a first application, we have determined oxalate in beer and human urine via post-column chemiluminescence detection. Oxalate is separated from the sample matrix in the monolithic column by precise programmable fluid handling, and then detected by reaction with on-line generated tris(2,2′-bipyridyl)ruthenium(III). Column coating, un-coating, ion chromatography and chemiluminescence detection are quickly performed by using a simple low-pressure multi-burette. The factors influencing the separation of oxalate and its subsequent detection, including the column coating with surfactants and its stability have been studied. The chromatographic behavior of the oxalate in presence of potentially interfering species also was assessed. The method has limits of detection and quantification of 0.025 and 0.035 mg L−1, respectively, a relative standard deviation of 3.1% (for 10 consecutive measurements without column re-coating) and a throughput of 48 h−1. The results obtained with real samples were validated by using an enzymatic spectrophotometric test. The method is critically compared to recent methods for the determination of oxalate.

Automated MSFIA system incorporating a C18 monolithic column (MC) coated with CTAB for the separation of oxolate and its post-column chemiluminescence detection

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Trojanowicz M (2008) Advances in flow analysis. Wiley-VCH, Weinheim

    Book  Google Scholar 

  2. Kolev SD, McKelvie ID (2008) Advances in flow injection analysis and related techniques. Elsevier BV, Amsterdam

    Google Scholar 

  3. Armenta S, Garrigues S, de la Guardia M (2008) Green analytical chemistry. Trends Anal Chem 27:497

    Article  CAS  Google Scholar 

  4. Maya F, Estela JM, Cerdà V (2009) Multisyringe flow injection technique for development of green spectroscopic analytical methodologies. Spectrosc Lett 42:312

    Article  CAS  Google Scholar 

  5. Serra AM, Estela JM, Cerdà V (2009) An MSFIA system for mercury speciation base on an anion-exchange membrane. Talanta 78:790

    Article  CAS  Google Scholar 

  6. Gonzalvez A, Armenta S, Cervera ML, de la Guardia M (2010) Non-chromatographic speciation. Trends Anal Chem 29:260

    Article  CAS  Google Scholar 

  7. Manera M, Miró M, Estela JM, Cerdà V (2007) Multi-syringe flow injection solid-phase extraction system for on-line simultaneous spectrophotometric determination of nitro-substituted phenol isomers. Anal Chim Acta 582:41

    Article  CAS  Google Scholar 

  8. Gomez V, Font J, Callao MP (2007) Sequential injection analysis with second-order treatment for the determination of dyes in the exhaustion process of tanning effluents. Talanta 71:1393

    Article  CAS  Google Scholar 

  9. Maya F, Estela JM, Cerdà V (2008) Completely automated system for determining halogenated organic compounds by multisyringe flow injection analysis. Anal Chem 80:5799

    Article  CAS  Google Scholar 

  10. Maya F, Estela JM, Cerdà V (2010) Flow analysis techniques as effective tools for the improved environmental analysis of organic compounds expressed as total índices. Talanta 81:1

    Article  CAS  Google Scholar 

  11. Peters EC, Petro M, Svec F, Frechet JMJ (1997) Molded rigid polymer monoliths as separation media for capillary electrochromatography. Anal Chem 69:3646

    Article  CAS  Google Scholar 

  12. Tanaka N, Kobayashi H, Ishizuka N, Minakuchi H, Nakanishi K, Hosoya K, Ikegami T (2002) Monolithic sílica columns for high-efficiency chromatographic separations. J Chromatogr A 965:35

    Article  CAS  Google Scholar 

  13. Satinsky D, Solich P, Chocholous P, Karlicek R (2003) Monolithic columns—a new concept of separation in the sequential injection technique. Anal Chim Acta 499:205

    Article  CAS  Google Scholar 

  14. Satinsky D, Huclova J, Solich P, Karlicek R (2003) Reversed-phase porous silica rods, an alternative approach to high-performance liquid chromatographic separation using the sequential injection chromatography technique. J Chromatogr A 1015:239

    Article  CAS  Google Scholar 

  15. Fernández M, González-San Miguel HM, Estela JM, Cerdà V (2009) Contribution of multi-commuted flow analysis combined with monolithic columns to low-pressure, high performance chromatography. Trends Anal Chem 28:336

    Article  Google Scholar 

  16. Kika FS (2009) Low pressure separations using automated flow and sequential injectin analysis coupled to monolithic columns. J Chromatogr Sci 47:648

    CAS  Google Scholar 

  17. Cerdà V, Estela JM, Forteza R, Cladera A, Becerra E, Altamira P, Sitjar P (1999) Flow techniques in water analysis. Talanta 50:695

    Article  Google Scholar 

  18. Segundo MA, Magalhaes LM (2006) Multisyringe flow injection analysis: state-of-the-art and perspectives. Anal Sci 22:3

    Article  CAS  Google Scholar 

  19. González-San Miguel HM, Alpízar-Lorenzo JM, Cerdà-Martín V (2007) Development of a new high performance low pressure chromatographic system using a Multisyringe burette coupled to a chromatographic monolithic column. Talanta 72:296

    Article  Google Scholar 

  20. Miguel HMGS, Alpízar-Lorenzo JM, Cerdà V (2007) Simultaneous determination of β-lactamic antibiotics by a new high-performance low-pressure chromatographic system using a Multisyringe burette coupled to a monolithic column (MSC). Anal Bioanal Chem 387:663

    Article  Google Scholar 

  21. Obando MA, Estela JM, Cerdà V (2008) Multisyringe chromatography (MSC) system for the on-line solid-phase extraction and determination of hydrochlorothiazide and losartan potassium in superficial water, groundwater and wastewater outlet samples. J Pharm Biomed Anal 48:212

    Article  CAS  Google Scholar 

  22. Adcock JL, Francis PS, Agg KM, Marshall GD, Barnett NW (2007) A hybrid FIA/HPLC system incorporating monolithic column chromatography. Anal Chim Acta 600:136

    Article  CAS  Google Scholar 

  23. Maya F, Estela JM, Cerdà V (2010) Interfacing on-line solid phase extraction with monolithic column Multisyringe chromatography and chemiluminescence detection: An effective tool for fast, sensitive and selective determination of thiazide diuretics. Talanta 80:1333

    Article  CAS  Google Scholar 

  24. Victory D, Nesterenko P, Paull B (2004) Low-pressure gradient micro-ion chromatography with ultra-short monolithic anion exchange column. Analyst 129:700

    Article  CAS  Google Scholar 

  25. Pelletier S, Lucy CA (2006) Achieving rapid low-pressure ion chromatography separations on short silica-based monolithic columns. J Chromatogr A 1118:12

    Article  CAS  Google Scholar 

  26. Barron L, Nesterenko PN, Diamond D, O’Toole M, Tong-Lau K, Paull B (2006) Low pressure ion chromatography with a low cost paired emitter-detector diode based detector for the determination of alkaline earth metals in water samples. Anal Chim Acta 577:32

    Article  CAS  Google Scholar 

  27. Paull B, Nesterenko PN (2005) New possibilities in ion chromatography using porous monolithic stationary-phase media. Trends Anal Chem 24:295

    Article  CAS  Google Scholar 

  28. Gerardi RD, Barnett NW, Lewis SW (1999) Analytical applications of tris(2, 2´-bipyridyl)ruthenium(III) as a chemiluminescent reagents. Anal Chim Acta 378:1

    Article  CAS  Google Scholar 

  29. Gorman BA, Francis PS, Barnett NW (2006) Tris(2, 2´-bipyridyl)ruthenium (II) chemiluminescence. Analyst 131:616

    Article  CAS  Google Scholar 

  30. Cat. No. 10755 699 035. Roche Biopharm AG. www.r-biopharm.com

  31. Zuo G, Jiang X, Liu H, Zhang J (2010) A novel urinary oxalate determination method via a catalase model compound with oxalate oxidase. Anal Methods 2:254

    Article  CAS  Google Scholar 

  32. Skotty DR, Nieman TA (1995) Determination of oxalate in urine and plasma using reversed-phase ion-pair high-performance liquid chromatography with tris(2, 2´-bipyridyl)ruthenium(II)-electrogenerated chemiluminescence detection. J Chromatogr B 665:27

    Article  CAS  Google Scholar 

  33. Pérez-Ruiz T, Martínez-Lozano C, Tomás V, Martín J (2004) High-performance liquid chromatographic separation and quantification of citric, lactic, malic, oxalic and tartaric acids using a post-column photochemical reaction and chemiluminescence detection. J Chromatogr A 1026:57

    Article  Google Scholar 

  34. Dionex. Application Note 36. http://www.dionex.com/en-us/webdocs/4126-AN36_V15.pdf

  35. Masar M, Zuborova M, Kaniansky D, Stanislawski B (2003) Determination of oxalate in beer by zone electrophoresis on a chip with conductivity detection. J Sep Sci 26:647

    Article  CAS  Google Scholar 

  36. Muñoz JA, Lopez-Mesas M, Valiente M (2010) Development and validation of a simple determination of urine metabolites (oxalate, citrate, uric and creatinine) by capillary zone electrophoresis. Talanta 81:392

    Article  Google Scholar 

  37. Becerra E, Cladera A, Cerdà V (1999) Design of a very versatile software program for automating analytical methods. Lab Rob Autom 11:131

    Article  CAS  Google Scholar 

  38. Glenn KM, Lucy CA (2008) Stability of surfactant coated columns for ion chromatography. Analyst 133:1581

    Article  CAS  Google Scholar 

  39. Magalhaes LM, Segundo MA, Reis S, Lima JLFC, Estela JM, Cerdà V (2007) Automatic in vitro determination of hypochlorous acid scavenging capacity exploiting Multisyringe flow injection analysis and chemiluminescence. Anal Chem 79:3933

    Article  CAS  Google Scholar 

  40. Maya F, Estela JM, Cerdà V (2007) Improving the chemiluminescence-based determination of sulphide in complex environmental samples by using a new, automated multi-syringe flow injection analysis system coupled to a gas diffusion unit. Anal Chim Acta 601:87

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported from the “Ministerio de Educación y Ciencia, Gobierno de España” through the project CTQ2010-15541. F. Maya is very grateful to the “Conselleria d’Economia, Hisenda i Innovació, Govern de les Illes Balears”, for its support through a PhD grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor Cerdà.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maya, F., Estela, J.M. & Cerdà, V. Multisyringe ion chromatography with chemiluminescence detection for the determination of oxalate in beer and urine samples. Microchim Acta 173, 33–41 (2011). https://doi.org/10.1007/s00604-010-0511-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-010-0511-1

Keywords

Navigation