Skip to main content
Log in

The electrochemistry of uric acid at a gold electrode modified with L-cysteine, and its application to sensing uric urine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The electrochemistry of uric acid at a gold electrode modified with a self-assembled film of L-cysteine was studied by cyclic voltammetry and differential pulse voltammetry. Compared to the bare gold electrode, uric acid showed better electrochemical response in that the anodic peak current is stronger and the peak potential is negatively shifted by about 100 mV. The effects of experimental conditions on the oxidation of uric acid were tested and a calibration plot was established. The differential pulse response to uric acid is linear in the concentration range from 1.0 × 10−6 to ~ 1.0 × 10−4 mol⋅L−1 (r = 0.9995) and from 1.0 × 10−4 to ~ 5.0 × 10−4 mol⋅L−1 (r = 0.9990), the detection limit being 1.0 × 10−7 mol⋅L−1 (at S/N = 3). The high sensitivity and good selectivity of the electrode was demonstrated by its practical application to the determination of uric acid in urine samples.

Cyclic voltammograms of UA at the bare electrode (a,b) and the L-Cys/Au electrode (c,d,e) in HAc-NaAc buffer containing different concentrations of UA. (a,c): blank; (b, d): 2.0 × 10−5 mol⋅L−1; (e) 4.0 × 10−5 mol⋅L−1. Scan rate: 100 mV⋅s−1

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rai CR, Kitamura F, Ohsaka T (2002) Square wave voltammetric sensing of uric acid using the self-assembly of mercaptobenzimidazole. Analyst 127:1155

    Article  Google Scholar 

  2. Martinez PD, Ferrer ML, Mateo CR (2003) A reagent less fluorescent sol-gel biosensor for uric acid detection in biological fluids. Anal Biochem 322:238

    Article  Google Scholar 

  3. Perelló J, Sanchis P, Grases F (2005) Determination of uric acid in urine, saliva and calcium oxalate renal calculi by high-performance liquid chromatography/mass spectrometry. J Chromatogr B 824:175

    Article  Google Scholar 

  4. Akyilmaz E, Sezginturk MK, Dinckaya E (2003) A biosensor based on urate oxidase-peroxidase coupled enzyme system for uric acid determination in urine. Talanta 61:73

    Article  CAS  Google Scholar 

  5. Zhao YS, Yang XY, Lu W, Liao H, Liao F (2009) Uricase based methods for determination of uric acid in serum. Microchim Acta 164:1

    Article  CAS  Google Scholar 

  6. Zen JM, Chen PJ (1997) A selective voltammetric method for uric acid and dopamine detection using clay-modified electrodes. Anal Chem 69:5087

    Article  CAS  Google Scholar 

  7. Cai XH, Kalcher K, Neuhold C, Ogorevc B (1994) An improved voltammetric method for the determination of traces amounts of uric acid with electrochemically pretreated carbon paste electrodes. Talanta 41:407

    Article  CAS  Google Scholar 

  8. Wang ZH, Wang YM, Luo GA (2002) Selective voltammetric method for uric acid detection at β-cyclodextrin modified electrode incorporating carbon nanotubes. Analyst 127:1353

    Article  CAS  Google Scholar 

  9. Popa E, Kubota Y, Tryk DA, Fujishima A (2000) Selective voltammetric and amperometric detection of uric acid with oxidized diamond film electrodes. Anal Chem 72:1724

    Article  CAS  Google Scholar 

  10. Rai CR, Ohsa T (2003) Voltammetric detection of uric acid in the presence of ascorbic acid at a good electrode modified with a self-assembled monolayer of heteroaromatic thiol. J Electroanal Chem 540:69

    Article  Google Scholar 

  11. Luo JW, Zhang M, Pang DW (2005) Selective and sensitive determination of uric acid at DNA-modified graphite powder microelectrodes. Sens Actuators B 106:358

    Article  Google Scholar 

  12. Lin XQ, Kang GF, Lu LP (2006) DNA/poly(p-aminobenzensulfonic acid) composite bi-layer modified glassy carbon electrode for determination of dopamine and uric acid under coexistence of ascorbic acid. Bioelectrochem 70:235

    Article  Google Scholar 

  13. Huang XJ, Im HS, Yarimaga O, Kim JM, Lee DH, Kim HS, Choi YK (2006) Direct electrochemistry of uric acid at chemically assembled carboxylated single-walled carbon nanotubes netlike electrode. J Phys Chem B 110:21850

    Article  CAS  Google Scholar 

  14. Zhang S, Xu M, Zhang Y (2009) Simultaneous voltammetric detection of salsolinol and uric acid in the presence of high concentration of ascorbic acid with gold nanoparticles/functionalized multiwalled carbon nanotubes composite film modified electrode. Electroanalysis 21:2607

    Article  CAS  Google Scholar 

  15. Manjunatha H, Nagaraju DH, Suresh GS, Venkatesha TV (2009) Detection of uric acid in the presence of dopamine and high concentration of ascorbic acid using PDDA modified graphite glectrode. Electroanalysis 21:2198

    Article  CAS  Google Scholar 

  16. Wang L, Bai JY, Huang PF, Wang HJ, Wu XW, Zhao YQ (2007) Selective determination of uric acid in the presence of ascorbic acid using a penicillamine self-assembled gold electrode. Microchim Acta 158:73

    Article  CAS  Google Scholar 

  17. Wu SG, Wang TL, Gao Z, Xu HH, Zhou BN, Wang CQ (2008) Selective detection of uric acid in the presence of ascorbic acid at physiological pH by using a β-cyclodextrin modified copolymer of sulfanilic acid and N-acetylaniline. Biosens Bioelectron 23:1776

    Article  CAS  Google Scholar 

  18. Sun D, Zhang Y, Wang FR, Wu KB, Chen JW, Zhou YK (2009) Electrochemical sensor for simultaneous detection of ascorbic acid, uric acid and xanthine based on the surface enhancement effect of mesoporous silica. Sens Actuators B 141:641

    Article  Google Scholar 

  19. Bouhouti HE, Naranjo-Rodríguez I, Hidalgo-Hidalgo JL et al (2009) Electrochemical behaviour of epinephrine and uric acid at a Sonogel–Carbon l-Cysteine modified electrode. Talanta 79:22

    Article  Google Scholar 

  20. Hirsch T, Kettenberger H, Wolfbeis OS, Mirsky VM (2003) A simple strategy for preparation of sensor arrays: molecularly structured monolayers as recognition elements. Chem Commun 3:432

    Article  Google Scholar 

  21. Li YZ, Huang JY, McIver RT, Hemminger JC (1992) Characterization of thiol self-assembled films by laser desorption Fourier transform mass spectrometry. J Am Chem Soc 114:2428

    Article  CAS  Google Scholar 

  22. Hu GZ, Ma YG, Guo Y, Shao SJ (2008) Electrocatalytic oxidation and simultaneous determination of uric acid and ascorbic acid on the gold nanoparticles modified glassy carbon electrode. Electrochim Acta 53:6610

    Article  CAS  Google Scholar 

  23. Liu CY, Lu GH, Jiang LY, Jiang LP, Zhou XC (2006) Study on the electrochemical behavior of dopamine and uric acid at a 2-amino-5-mercapto-[1, 3, 4] triazole self-sssembled monolayers electrode. Electroanalysis 18:291

    Article  CAS  Google Scholar 

  24. Fang B, Jiao SF, Li MG, Tao HS (2006) Simultaneous determination of uric acid and ascorbic acid at a ferrocenium-thioglycollate modified electrode. Anal Bioanal Chem 386:2117

    Article  CAS  Google Scholar 

  25. Li NB, Niu LM, Luo HQ (2006) Electrochemical behavior of uric acid and epinephrine at a meso-2, 3-dimercaptosuccinic acid self-assembled gold electrode. Microchim Acta 153:37

    Article  Google Scholar 

  26. Owens JL, Marsh HA, Dryhurst G (1978) Electrochemical oxidation of uric acid and xanthine: an investigation by cyclic voltammetry, double potential step chronoamperometry and thin-layer spectroelectrochemistry. J Electroanal Chem 91:231

    CAS  Google Scholar 

  27. Fu CG, Su CH, Shan RF (2004) Electrochemical properties of L-cysteine self-assembled membrane modified gold electrode. Acta Phys Chim Sin 20:207

    CAS  Google Scholar 

  28. Anson FC (1966) Innovations in the study of adsorbed reactants by chronocoulometry. Anal Chem 38:54

    Article  CAS  Google Scholar 

  29. Shi K, Shiu KK (2001) Determination of uric acid at electrochemically activated glassy carbon electrode. Electroanalysis 13:1319

    Article  CAS  Google Scholar 

  30. Chen ZF, Zu YB (2007) Simultaneous detection of ascorbic acid and uric acid using a fluorosurfactant-modified platinum electrode. J Electroanal Chem 603:281

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No.20977041 and No.31070885).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yazhen Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y. The electrochemistry of uric acid at a gold electrode modified with L-cysteine, and its application to sensing uric urine. Microchim Acta 172, 419–424 (2011). https://doi.org/10.1007/s00604-010-0510-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-010-0510-2

Keywords

Navigation