Skip to main content
Log in

A solid bar microextraction method for the liquid chromatographic determination of trace diclofenac, ibuprofen and carbamazepine in river water

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A solid bar microextraction (SBME) method containing sorbent materials 2 mg in the lumen of a porous hollow fiber membrane 2.5 cm for the extraction of carbamazepine, diclofenac and ibuprofen from river water samples is described. The desorbed analytes were analyzed using reversed-phase high performance liquid chromatography with ultraviolet detection. In order to achieve optimum performance, several extraction parameters were optimized. Of the sorbents evaluated, LiChrosorb RP-8 was the most promising. Under the optimized conditions, limits of detection from 0.7 to 0.9 μg L−1, precisions from 5.5 to 6.4% and a correlation coefficient of 0.999 were obtained for the target drugs over a concentration range of 1–200 μg L−1. In comparison with the solid phase extraction, the SBME system offers distinct advantages due to its higher enrichment factors, lower consumption of organic solvents and time saving.

A solid bar microextraction method for the liquid chromatographic determination of trace diclofenac, ibuprofen and carbamazepine in river water

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dębska J, Kot-Wasik A, Namieśnik J (2004) Fate and analysis of pharmaceutical residues in the aquatic environment. Crit Rev Anal Chem 34:51–67. doi:10.1080/10408340490273753

    Article  Google Scholar 

  2. Scheytt T, Mersmann P, Lindstädt R, Heberer T (2005) Determination of sorption coefficients of pharmaceutically active substances carbamazepine, diclofenac, and ibuprofen, in sandy sediments. Chemosphere 60:245–253. doi:10.1016/j.chemosphere.2004.12.042

    Article  CAS  Google Scholar 

  3. Tixier C, Singer HP, Oellers S, Müller SR (2003) Occurrence and fate of carbamazepine, clofibric acid, diclofenac, ibuprofen, ketoprofen, and naproxen in surface waters. Environ Sci Technol 37:1061–1068. doi:10.1021/es025834r

    Article  CAS  Google Scholar 

  4. Bound J, Voulvoulis N (2005) Household disposal of pharmaceuticals as a pathway for aquatic contamination in the United Kingdom. Environ Health Persp 113:1705–1711. doi:10.1289/ehp.8315

    Article  Google Scholar 

  5. Matamoros V, Duhec A, Albaigés J, Bayona JM (2009) Photodegradation of carbamazepine, ibuprofen, ketoprofen and 17α-ethinylestradiol in fresh and seawater. Water Air Soil Pollut 196:161–168. doi:10.1007/s11270-008-9765-1

    Article  CAS  Google Scholar 

  6. Zuehlke S, Duennbier U, Heberer T (2004) Determination of polar drug residues in sewage and surface water applying liquid chromatography−tandem mass spectrometry. Anal Chem 76:6548–6554. doi:10.1021/ac049324m

    Article  CAS  Google Scholar 

  7. Paschke A, Brümmer J, Schürmann G (2007) Silicone rod extraction of pharmaceuticals from water. Anal Bioanal Chem 387:1417–1421. doi:10.1007/s00216-006-0986-0

    Article  CAS  Google Scholar 

  8. Richardson SD (2001) Water analysis. Anal Chem 73:2719–2734. doi:10.1021/ac010376a

    Article  CAS  Google Scholar 

  9. Ahrer W, Scherwenk E, Buchberger W (2001) Determination of drug residues in water by the combination of liquid chromatography or capillary electrophoresis with electrospray mass spectrometry. J Chromatogr A 910:69–78. doi:10.1016/S0021-9673(00)01187-0

    Article  CAS  Google Scholar 

  10. Togola A, Budzinski H (2007) Analytical development for analysis of pharmaceuticals in water samples by SPE and GC–MS. Anal Bioanal Chem 388:627–635. doi:10.1007/s00216-007-1251-x

    Article  CAS  Google Scholar 

  11. Petrović M, Hernando MD, Díaz-Cruz MS, Barceló DJ (2005) Liquid chromatography–tandem mass spectrometry for the analysis of pharmaceutical residues in environmental samples: a review. Chromatogr A 1067:1–14. doi:10.1016/j.chroma.2004.10.110

    Article  Google Scholar 

  12. Basheer C, Guang CH, Hii TM, Lee HK (2007) Application of porous membrane-protected micro-solid-phase extraction combined with HPLC for the analysis of acidic drugs in wastewater. Anal Chem 79:6845–6850. doi:10.1021/ac070372r

    Article  CAS  Google Scholar 

  13. Basheer C, Narasimhan K, Yin M, Zhao C, Choolani M, Lee HK (2008) Application of micro-solid-phase extraction for the determination of persistent organic pollutants in tissue samples. J Chromatogr A 1186:358–364. doi:10.1016/j.chroma.2007.10.015

    Article  CAS  Google Scholar 

  14. Basheer C, Alnedhary AA, Rao BSM, Lee HK (2009) Determination of carbamate pesticides using micro-solid-phase extraction combined with high-performance liquid chromatography. J Chromatogr A 1216:211–216. doi:10.1016/j.chroma.2008.11.042

    Article  CAS  Google Scholar 

  15. Halvorsen TG, Pedersen-Bjergaard S, Reubsaet JLE, Rasmussen KE (2001) Liquid-phase microextraction combined with flow-injection tandem mass spectrometry rapid screening of amphetamines from biological matrices. J Sep Sci 24:615–622. doi:10.1002/1615-9314(20010801)24:7<615::AID-JSSC615>3.0.CO;2-Z

    Article  CAS  Google Scholar 

  16. Shen G, Lee HK (2002) Hollow fiber-protected liquid-phase microextraction of triazine herbicides. Anal Chem 74:648–654. doi:10.1021/ac010561o

    Article  CAS  Google Scholar 

  17. Hu X, Huang Y, Tao Y, Yin D, Liu J (2010) Hollow fiber membrane supported thin liquid film extraction for determination of trace phenoxy acid herbicides and phenols in environmental water samples. Microchim Acta 168:23–29. doi:10.1007/s00604-009-0256-x

    Article  CAS  Google Scholar 

  18. Yazdi AS, Es’haghi Z (2005) Two-step hollow fiber-based, liquid-phase microextraction combined with high-performance liquid chromatography: a new approach to determination of aromatic amines in water. J Chromatogr A 1082:136–142. doi:10.1016/j.chroma.2005.05.102

    Article  CAS  Google Scholar 

  19. Dziarkowska K, Jönsson JÅ, Wieczorek PP (2008) Single hollow fiber SLM extraction of polyamines followed by tosyl chloride derivatization and HPLC determination. Anal Chim Acta 606:184–193. doi:10.1016/j.aca.2007.11.014

    Article  CAS  Google Scholar 

  20. Ahmadia F, Shahsavari AA, Rahimi-Nasrabadi M (2008) Automated extraction and preconcentration of multiresidue of pesticides on a micro-solid-phase extraction system based on polypyrrole as sorbent and off-line monitoring by gas chromatography–flame ionization detection. J Chromatogr A 1193:26–31. doi:10.1016/j.chroma.2008.04.025

    Article  Google Scholar 

  21. King S, Meyer JS, Andrews ARJ (2002) Two-step hollow fiber-based, liquid-phase microextraction combined with high-performance liquid chromatography: a new approach to determination of aromatic amines in water. J Chromatogr A 982:201–208. doi:10.1016/S0021-9673(02)01594-7

    Article  CAS  Google Scholar 

  22. Fu H, Guan J, Bao J (2006) A hollow fiber solvent microextraction approach to measure drug-protein binding. Anal Sci 22:1565–1569. doi:10.2116/analsci.22.1565

    Article  CAS  Google Scholar 

  23. Carballa M, Omil F, Lema JM (2008) Comparison of predicted and measured concentrations of selected pharmaceuticals, fragrances and hormones in Spanish sewage. Chemosphere 72:1118–1123. doi:doi:10.1016/j.chemosphere.2008.04.034

    Article  CAS  Google Scholar 

  24. Lin WC, Chen HC, Ding WH (2005) Determination of pharmaceutical residues in waters by solid-phase extraction and large-volume on-line derivatization with gas chromatography–mass spectrometry. J Chromatogr A 1065:279–285. doi:10.1016/j.chroma.2004.12.081

    Article  CAS  Google Scholar 

  25. Sae-Khow O, Mitra S (2009) Carbon nanotubes as the sorbent for integrating μ-solid phase extraction within the needle of a syringe. J Chromatogr A 1216:2270–2274. doi:10.1016/j.chroma.2009.01.037

    Article  CAS  Google Scholar 

  26. Scheytt T, Mersmann P, Heberer T (2006) Mobility of pharmaceuticals carbamazepine, diclofenac, ibuprofen, and propyphenazone in miscible-displacement experiments. J Contam Hydrol 83:53–69. doi:10.1016/j.jconhyd.2005.11.002

    Article  CAS  Google Scholar 

  27. Hanna M, de Biasi V, Bond B, Salter C, Hutt AJ, Camilleri P (1998) Estimation of the partitioning characteristics of drugs: a comparison of a large and diverse drug series utilizing chromatographic and electrophoretic methodology. Anal Chem 70:2092–2099. doi:10.1021/ac971122l

    Article  CAS  Google Scholar 

  28. Kostopoulou M, Nikolaou A (2008) Analytical problems and the need for sample preparation in the determination of pharmaceuticals and their metabolites in aqueous environmental matrices. Trends Anal Chem 27:1023–1035. doi:10.1016/j.trac.2008.09.011

    Article  CAS  Google Scholar 

  29. Waksmundzka-Hajnos M, Petruczynik A, Hawryl A (2001) Comparison of chromatographic properties of cyanopropyl-, diol- and aminopropyl- polar-bonded stationary phases by the retention of model compounds in normal-phase liquid chromatography systems. J Chromatogr A 919:39–50. doi:10.1016/S0021-9673(01)00796-8

    Article  CAS  Google Scholar 

  30. Petrovic M, Barceló D, Diaz A, Ventura F (2003) Low nanogram per liter determination of halogenated nonylphenols, nonylphenol carboxylates, and their non-halogenated precursors in water and sludge by liquid chromatography electrospray tandem mass spectrometry. J Am Soc Mass Spectrom 14:516–527. doi:10.1016/S1044-0305(03)00139-9

    Article  CAS  Google Scholar 

  31. Pedersen SN, Lindholst C (1999) Quantification of the xenoestrogens 4-tert.-octylphenol and bisphenol A in water and in fish tissue based on microwave assisted extraction, solid-phase extraction and liquid chromatography–mass spectrometry. J Chromatogr A 864:17–24. doi:10.1016/S0021-9673(99)01011-0

    Article  CAS  Google Scholar 

  32. Shang DY, Ikonomou MG, Macdonald RW (1999) Quantitative determination of nonylphenol polyethoxylate surfactants in marine sediment using normal-phase liquid chromatography–electrospray mass spectrometry. J Chromatogr A 849:467–482. doi:10.1016/S0021-9673(99)00563-4

    Article  CAS  Google Scholar 

  33. Stuer-Lauridsen F (2005) Review of passive accumulation devices for monitoring organic micropollutants in the aquatic environment. Environ Pollut 136:503–524. doi:10.1016/j.envpol.2004.12.004

    Article  CAS  Google Scholar 

  34. Yarovdcy I, Aguilar M-I, Heam MTW (1995) Influence of the chain length and surface density on the conformation and mobility of n-alkyl ligands chemically immobilized onto a silica surface. Anal Chem 67:2145–2153. doi:10.1021/ac00109a038

    Article  Google Scholar 

  35. Scheytt T, Mersmann P, Lindstädt R, Heberer T (2005) 1-Octanol/water partition coefficients of 5 pharmaceuticals from human medical care: carbamazepine, clofibric acid, diclofenac, ibuprofen, and propyphenazone. Water Air Soli Pollut 165:3–11. doi:10.1007/s11270-005-3539-9

    Article  CAS  Google Scholar 

  36. Chimuka L, Megersa N, Norberg J, Mathiasson L, Jönsson JÅ (1998) Incomplete trapping in supported liquid membrane extraction with a stagnant acceptor for weak bases. Anal Chem 70:3906–3911. doi:10.1021/ac971327u

    Article  CAS  Google Scholar 

  37. Basheer C, Alnedhary AA, Rao BSM, Valliyaveettil S, Lee HK (2006) Development and application of porous membrane-protected carbon nanotube micro-solid-phase extraction combined with gas chromatography/mass spectrometry. Anal Chem 78:2853–2858. doi:10.1021/ac060240i

    Article  CAS  Google Scholar 

  38. Büchele B, Zugmaier W, Simmet T (2003) Analysis of pentacyclic triterpenic acids from frankincense gum resins and related phytopharmaceuticals by high-performance liquid chromatography. Identification of lupeolic acid, a novel pentacyclic triterpene. J Chromatogr B 791:21–30. doi:10.1016/S1570-0232(03)00160-0

    Article  Google Scholar 

Download references

Acknowledgements

Financial support of the work via a Universiti Sains Malaysia (USM) Research University Grant is acknowledged. One of us (Nabil AL-Hadithi) thanks USM for providing a postdoctoral research position.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabil AL-Hadithi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOCX 68.0 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

AL-Hadithi, N., Saad, B. & Grote, M. A solid bar microextraction method for the liquid chromatographic determination of trace diclofenac, ibuprofen and carbamazepine in river water. Microchim Acta 172, 31–37 (2011). https://doi.org/10.1007/s00604-010-0463-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-010-0463-5

Keywords

Navigation