Opto-chemical micro-capillary clocks

Abstract

Opto-chemical capillary clocks are presented that are based on the measurement of a colored segment in a microchannel (a capillary). Color is created by a chromogenic chemistry involving the oxidation of a (virtually colorless) leuco-dye. Poly(ethylene glycol) (PEG) is used as a solvent, and indigo and thioindigo (in their reduced leuco forms) act as oxygen-sensitive dyes. The clock is started by removing one seal at the end of the capillary. A visible color change occurs as air diffuses into the microchannel due to an irreversible color reaction. The length of the colored segment is proportional to the time elapsed. PEGs of different average molar mass affect the diffusion rate of oxygen in the microchannel and thereby affect the rate of the migration of the color front. Both temperature and relative humidity exert a strong effect. Six types of such clocks are described that enable times to be determined in the range from 1 day to 6 months, possibly of even decades.

Optical clocks are presented where elapsed time is indicated by the length of the colored segment of a micro-capillary.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Galagan Y, Su WF (2008) Fadable ink for time-temperature control of food freshness: novel new time-temperature indicator. Food Res Int 41:653–657

    CAS  Article  Google Scholar 

  2. 2.

    Galagan Y, Hsu SH, Su WF (2009) Monitoring time and temperature by methylene blue containg polyacrylate film. Sens Actuators B: Chem 144:49–55

    Article  Google Scholar 

  3. 3.

    Bommarito GM, Mazurek MH, Johnston RP, Yarusso DJ, Larson CL (2004) Microstructured time dependent indicators. US Patent 6,741,523 B1

  4. 4.

    Hsu YC, Sair AI, Booren AM, Smith DM (2000) Triose phosphate isomerase as an endogenous time-temperature integrator to verify adequacy of roast beef processing. J Food Sci 65:236–240

    CAS  Article  Google Scholar 

  5. 5.

    Mendoza TF, Welt BA, Otwell S, Teixeira AA, Kristonsson H, Balaban MO (2004) Kinetic parameter estimation of time-temperature integrators intended for use with packaged fresh seafood. J Food Sci 69:FMS90–FMS96

    CAS  Article  Google Scholar 

  6. 6.

    Ocio MJ, Fernandez PS, Rodrigo M, Periago P, Martinez A (1997) A time-temperature integrator for particulated food: thermal process evaluation. Z Lebensm Unters Forsch A 205:325–328

    CAS  Article  Google Scholar 

  7. 7.

    Rodrigo F, Rodrigo MC, Martinez A (1998) Evaluation of a new time temperature integrator in pilot plant conditions. Z Lebensm Unters Forsch A 206:184–188

    CAS  Article  Google Scholar 

  8. 8.

    Arens RP, Birkholz RD, Johnson DL, Labuza TP, Larson CL, Yarusso DJ (1997) Time-temperature integrating indicator device. US Patent 5,667,303

  9. 9.

    Haas DJ, Holt RJ, Davis LH (2006) Long term rapid color changing time indicator. US Patent 7,139,226 B2

  10. 10.

    Haas DJ (1990) Time indicator enhancement method. US Patent 4,903,254

  11. 11.

    Haas DJ, Haas SF (1997) Long term rapid color changing time indicator. US Patent 5,633,835

  12. 12.

    Manske WJ (1976) Selected time interval indicating device. US Patent 3,954,011

  13. 13.

    Jackson D (1969) Time indicator. US Patent 3,480,402

  14. 14.

    Robertson GL (2006) Food packaging: principles and practice, 2nd edn. Taylor & Francis, New York

    Google Scholar 

  15. 15.

    Gil L, Barat JM, Escriche I, Garcia-Breijo E, Martinez-Manez R, Soto J (2008) An electronic tongue for fish freshness analysis using a thick-film arry of electrodes. Microchim Acta 163:121–129

    CAS  Article  Google Scholar 

  16. 16.

    Valdés MG, Gonzales ACV, Calzon JAG, Diaz-Garcia ME (2009) Analytical nanotechnology for food analysis. Microchim Acta 166:1–19

    Article  Google Scholar 

  17. 17.

    Chen N, Chen N, Chen N (2004) Food freshness indicator. US Patent 6,723,285 B2

  18. 18.

    Huidobro A, Pastor A, Tejada M (2000) Adenosine triphosphate and derivates as freshness indicators of gilthed sea bream. Food Sci Technol Int 7:23–30

    Google Scholar 

  19. 19.

    Gohil RM (2006) Device for indicating the passage of time an method therefore and articles therewith. Pat. Appl. WO 2006/058228 A1

  20. 20.

    Hu KH, Loconti JD (1973) Temperature-time integrating indicator. US Patent 3,768,976

  21. 21.

    Roessler A, Crettenand D, Dossenbach O, Rys P (2003) Electrochemical reduction of indigo in fixed and fluidized beds of graphite granules. J Appl Electrochem 33:901–908

    CAS  Article  Google Scholar 

  22. 22.

    Fanjul-Bolado P, Gonzalez-Garcia MB, Costa-Garcia A (2005) Detection of leucoindigo in alkaline phosphatase and peroxidase based assays using 3-indoxyl phosphate as substrate. Anal Chim Acta 534:231–238

    CAS  Article  Google Scholar 

  23. 23.

    Lewis G (2002) Elapsed time indicator. Pat. Appl. WO 02/46741 A1

  24. 24.

    Lewis G (2002) Tamper evident packaging. Pat. Appl. WO 02/059010 A1

  25. 25.

    Biritz LF (1962) Timer device and method for determination. US Patent 3,018,611

  26. 26.

    Broser W, Kurreck H, Niemeier W (1975) Über paramagnetische Dimerenkomplexe des substituierten Triphenylmetyhlradikals. Tetrahedron 32:1183–1187

    Article  Google Scholar 

  27. 27.

    Schlenk W, Weickel T, Herzenstein A (1910) Ueber Triphenylmethyl und Analoga des Triphenylmethyls in der Biphenylreihe. Justus Liebigs Ann Chem 372:1–20

    CAS  Article  Google Scholar 

  28. 28.

    Halford JO, Anderson LC (1933) The photochemical production of triphenylmethyl. Proc Natl Acad Sci 19:759–762

    CAS  Article  Google Scholar 

  29. 29.

    Lilly RL, Tummers GLJ, Johnson CD, Davis RD (1980) Elapsed time indicator. US Patent 4,229,813

  30. 30.

    Diekmann TJ, Bommarito GM (2005) Time or time-temperature indicating articles. US Patent 6,916,116 B2

  31. 31.

    Komorsky-Lovric S, Mirceski V, Scholz F (1999) Voltammetry of organic microparticles. Microchim Acta 132:67–77

    CAS  Article  Google Scholar 

  32. 32.

    Vuorema A, John P, Keskitalo M, Marken F (2008) Electrochemical determination of plant-derived leuco-indigo after chemical reduction by glucose. J Appl Electrochem 38:1683–1690

    CAS  Article  Google Scholar 

  33. 33.

    Harris JM (1992) Poly(ethylene glycol) chemistry, biotechnical and biomedical applications. Plenum, New York

    Google Scholar 

  34. 34.

    Clark RJH, Cooksey CJ, Daniels MAM, Withnall R (1993) Indigo, woad, and Tyrian purple: important vat dyes form antiquity to the present. Endeavour 17:191–199

    CAS  Article  Google Scholar 

  35. 35.

    Alcantar NA, Aydil ES, Israelachvili JN (2000) Poly(ethylene glycol)-coated biocompatible surfaces. J Biomed Mater Res A 51:343–351

    CAS  Article  Google Scholar 

  36. 36.

    Fuertges F, Abuchowski A (1990) The clinical efficacy of poly(ethylene glycol) modified proteins. J Control Release 11:139–148

    CAS  Article  Google Scholar 

  37. 37.

    Chen J, Spear SK, Huddleston JG, Rogers RD (2005) Poly(ethylene glycol) and solutions of poly(ethylene glycol) as green reaction media. Green Chem 7:64–82

    CAS  Article  Google Scholar 

  38. 38.

    Li J, Nagai K, Nakagawa T, Wang S (2003) Preparation of poly(ethylene glycol) and cellulose acetate blend membranes, and their gas permeabilities. J Appl Polym Sci 58:1455–1463

    Article  Google Scholar 

  39. 39.

    Mills A, Tommons C, Bailey RT, Tedford MC, Crilly PC (2008) UV-activated luminescence/colourimetric oxygen indicator. Intl J Photoenergy; open access article ID 547301; doi:10.1155/2008/547301; 6 pp

  40. 40.

    Weigl BH, Wolfbeis OS (1994) Capillary optical sensors. Anal Chem 66:3323–3327

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Otto S. Wolfbeis.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wilhelm, S., Wolfbeis, O.S. Opto-chemical micro-capillary clocks. Microchim Acta 171, 211–216 (2010). https://doi.org/10.1007/s00604-010-0456-4

Download citation

Keywords

  • Optical timer
  • Chromogenic chemistry
  • Indigo
  • Oxygen
  • Clock
  • Poly(ethylene glycol)