Diazonium-functionalized tyrosinase-based biosensor for the detection of tea polyphenols


A tyrosinase-based biosensor was constructed by immobilizing the enzyme on diazonium-functionalized screen-printed gold electrodes. Under optimized conditions, the biosensor exhibited rapid response to the changes in the concentration of all the tested phenolic compounds (catechol, catechin, caffeic acid and gallic acid). Sensitivity, linear range and limit of detection (LOD) were determined, and catechol was found to display the highest sensitivity (36.3 mA M−1) and the lowest LOD (0.1 μmol L−1). The biosensor was successfully applied to the detection of polyphenols in tea samples.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. 1.

    Valdés M, Valdés González A, García Calzón J, Díaz-García M (2009) Analytical nanotechnology for food analysis. Microchim Acta 166:1–19

    Article  Google Scholar 

  2. 2.

    Pratt DE (1992) Natural antioxidants from plant material. In phenolic compounds in food and their effects on health II. American Chemical Society, Washington, DC

    Google Scholar 

  3. 3.

    Rice-Evans CA, Packer L (1989) Flavonoids in health and disease. CRC, Boca Raton, USA

    Google Scholar 

  4. 4.

    Lu Y, Yeap Foo L (2000) Antioxidant and radical scavenging activities of polyphenols from apple pomace. Food Chem 68:81–85

    CAS  Article  Google Scholar 

  5. 5.

    Sánchez-Moreno C, Larrauri JA, Saura-Calixto F (1999) Free radical scavenging capacity and inhibition of lipid oxidation of wines, grape juices and related polyphenolic constituents. Food Res Int 32:407–412

    Article  Google Scholar 

  6. 6.

    Blasco AJ, Rogerio MC, González MC, Escarpa A (2005) “Electrochemical Index” as a screening method to determine “total polyphenolics” in foods: A proposal. Anal Chim Acta 539:237–244

    CAS  Article  Google Scholar 

  7. 7.

    Escarpa A, González MC (2001) Approach to the content of total extractable phenolic compounds from different food samples by comparison of chromatographic and spectrophotometric methods. Anal Chim Acta 427:119–127

    CAS  Article  Google Scholar 

  8. 8.

    Cui H, He C, Zhao G (1999) Determination of polyphenols by high-performance liquid chromatography with inhibited chemiluminescence detection. J Chromatogr A 855:171–179

    CAS  Article  Google Scholar 

  9. 9.

    Ishii K, Furuta T, Kasuya Y (2001) Determination of rutin in human plasma by high-performance liquid chromatography utilizing solid-phase extraction and ultraviolet detection. J Chromatogr B 759:161–168

    CAS  Article  Google Scholar 

  10. 10.

    Ishii K, Furuta T, Kasuya Y (2003) High-performance liquid chromatographic determination of quercetin in human plasma and urine utilizing solid-phase extraction and ultraviolet detection. J Chromatogr B 794:49–56

    CAS  Article  Google Scholar 

  11. 11.

    Polásek M, Petriska I, Pospísilová M, Jahodár L (2006) Use of molybdate as novel complex-forming selector in the analysis of polyhydric phenols by capillary zone electrophoresis. Talanta 69:192–198

    Article  Google Scholar 

  12. 12.

    Xu X, Ye H, Wang W, Yu L, Chen G (2006) Determination of flavonoids in Houttuynia cordata Thunb. and Saururus chinensis (Lour.) Bail. by capillary electrophoresis with electrochemical detection. Talanta 68:759–764

    CAS  Article  Google Scholar 

  13. 13.

    Song Z, Hou S (2002) Sensitive determination of sub-nanogram amounts of rutin by its inhibition on chemiluminescence with immobilized reagents. Talanta 57:59–67

    CAS  Article  Google Scholar 

  14. 14.

    Turner APF, Karube I, Wilson GS (1990) Biosensors: fundamentals and applications. Oxford University Press, USA

    Google Scholar 

  15. 15.

    Montereali MR, Vastarella W, Della Seta L, Pilloton R (2005) Tyrosinase biosensor based on modified screen printed electrodes: measurements of total phenol content. Int J Environ An Ch 85:795–806

    CAS  Article  Google Scholar 

  16. 16.

    Romani A, Minunni M, Mulinacci N, Pinelli P, Vincieri FF, Del Carlo M, Mascini M (2000) Comparison among differential pulse voltammetry, amperometric biosensor, and HPLC/DAD analysis for polyphenol determination. J Agric Food Chem 48:1197–1203

    CAS  Article  Google Scholar 

  17. 17.

    Abhijith K, Sujith Kumar P, Kumar M, Thakur M (2007) Immobilised tyrosinase-based biosensor for the detection of tea polyphenols. Anal Bioanal Chem 389:2227–2234

    CAS  Article  Google Scholar 

  18. 18.

    Chen J, Jin Y (2010) Sensitive phenol determination based on co-modifying tyrosinase and palygorskite on glassy carbon electrode. Microchim Acta 169:249–254

    CAS  Article  Google Scholar 

  19. 19.

    Franzoi AC, Dupont J, Spinelli A, Vieira IC (2009) Biosensor based on laccase and an ionic liquid for determination of rosmarinic acid in plant extracts. Talanta 77:1322–1327

    CAS  Article  Google Scholar 

  20. 20.

    Gamella M, Campuzano S, Reviejo AJ, Pingarron JM (2006) Electrochemical estimation of the polyphenol index in wines using a laccase biosensor. J Agric Food Chem 54:7960–7967

    CAS  Article  Google Scholar 

  21. 21.

    Gomes SASS, Nogueira JMF, Rebelo MJF (2004) An amperometric biosensor for polyphenolic compounds in red wine. Biosens Bioelectron 20:1211–1216

    CAS  Article  Google Scholar 

  22. 22.

    S-i I, Kong Y-T, Watanabe M (2001) Amperometric biosensor for polyphenol based on horseradish peroxidase immobilized on gold electrodes. Electroanalysis 13:408–412

    Article  Google Scholar 

  23. 23.

    Mello LD, Alves AA, Macedo DV, Kubota LT (2005) Peroxidase-based biosensor as a tool for a fast evaluation of antioxidant capacity of tea. Food Chem 92:515–519

    CAS  Article  Google Scholar 

  24. 24.

    Kong Y-T, S-i I, Kano K, Ikeda T, Kakiuchi T (2001) Peroxidase-based amperometric sensor for the determination of total phenols using two-stage peroxidase reactions. Am J Enol Vitic 52:381–385

    CAS  Google Scholar 

  25. 25.

    Carralero Sanz V, Mena ML, González-Cortés A, Yáñez-Sedeño P, Pingarrón JM (2005) Development of a tyrosinase biosensor based on gold nanoparticles-modified glassy carbon electrodes: Application to the measurement of a bioelectrochemical polyphenols index in wines. Anal Chim Acta 528:1–8

    CAS  Article  Google Scholar 

  26. 26.

    Eggins BR, Hickey C, Toft SA, Zhou DM (1997) Determination of flavanols in beers with tissue biosensors. Anal Chim Acta 347:281–288

    CAS  Article  Google Scholar 

  27. 27.

    Gooding JJ (2008) Advances in interfacial design for electrochemical biosensors and sensors: aryl diazonium salts for modifying carbon and metal electrodes. Electroanalysis 20:573–582

    CAS  Article  Google Scholar 

  28. 28.

    Griveau S, Mercier D, Vautrin-Ul C, Chaussé A (2007) Electrochemical grafting by reduction of 4-aminoethylbenzenediazonium salt: Application to the immobilization of (bio)molecules. Electrochem Commun 9:2768–2773

    CAS  Article  Google Scholar 

  29. 29.

    Bourdillon C, Delamar M, Demaille C, Hitmi R, Moiroux J, Pinson J (1992) Immobilization of glucose oxidase on a carbon surface derivatized by electrochemical reduction of diazonium salts. J Electroanal Chem 336:113–123

    CAS  Article  Google Scholar 

  30. 30.

    Radi A-E, Muñoz-Berbel X, Cortina-Puig M, Marty J-L (2009) An electrochemical immunosensor for ochratoxin A based on immobilization of antibodies on diazonium-functionalized gold electrode. Electrochim Acta 54:2180–2184

    CAS  Article  Google Scholar 

  31. 31.

    Radi A-E, Muñoz-Berbel X, Cortina-Puig M, Marty J-L (2009) Novel protocol for covalent immobilization of horseradish peroxidase on gold electrode surface. Electroanalysis 21:696–700

    CAS  Article  Google Scholar 

  32. 32.

    Radi A-E, Muñoz-Berbel X, Cortina-Puig M, Marty J-L (2009) A third-generation hydrogen peroxide biosensor based on horseradish peroxidase covalently immobilized on electrografted organic film on screen-printed carbon electrode. Electroanalysis 21:1624–1629

    CAS  Article  Google Scholar 

  33. 33.

    Yang X, Hall SB, Burrell AK, Officer DL (2001) A pH-responsive hydroquinone-functionalised glassy carbon electrode. Chem Commun 2628–2629

  34. 34.

    Vaik K, Mäeorg U, Maschion FC, Maia G, Schiffrin DJ, Tammeveski K (2005) Electrocatalytic oxygen reduction on glassy carbon grafted with anthraquinone by anodic oxidation of a carboxylate substituent. Electrochim Acta 50:5126–5131

    CAS  Article  Google Scholar 

  35. 35.

    Sarapuu A, Vaik K, Schiffrin DJ, Tammeveski K (2003) Electrochemical reduction of oxygen on anthraquinone-modified glassy carbon electrodes in alkaline solution. J Electroanal Chem 541:23–29

    CAS  Article  Google Scholar 

  36. 36.

    Nassef HM, Radi A-E, O’Sullivan CK (2006) Electrocatalytic sensing of NADH on a glassy carbon electrode modified with electrografted o-aminophenol film. Electrochem Commun 8:1719–1725

    CAS  Article  Google Scholar 

  37. 37.

    Zhou Y, Zhi J (2006) Development of an amperometric biosensor based on covalent immobilization of tyrosinase on a boron-doped diamond electrode. Electrochem Commun 8:1811–1816

    CAS  Article  Google Scholar 

  38. 38.

    Pinson J, Podvorica F (2005) Attachment of organic layers to conductive or semiconductive surfaces by reduction of diazonium salts. Chem Soc Rev 34:429–439

    CAS  Article  Google Scholar 

  39. 39.

    Harrar JE, Shain I (1966) Electrode potential gradients and cell design in controlled potential electrolysis experiments. Anal Chem 38:1148–1158

    CAS  Article  Google Scholar 

  40. 40.

    Laviron E (1979) The use of linear potential sweep voltammetry and of a.c. voltammetry for the study of the surface electrochemical reaction of strongly adsorbed systems and of redox modified electrodes. J Electroanal Chem 100:263–270

    CAS  Article  Google Scholar 

  41. 41.

    Liu Y-C, McCreery RL (1995) Reactions of organic monolayers on carbon surfaces observed with unenhanced raman spectroscopy. J Am Chem Soc 117:11254–11259

    CAS  Article  Google Scholar 

  42. 42.

    Zhang X, van Leeuwen J, Wichers HJ, Flurkey WH (1999) Characterization of tyrosinase from the cap flesh of portabella mushrooms. J Agric Food Chem 47:374–378

    CAS  Article  Google Scholar 

  43. 43.

    Seo S-Y, Sharma VK, Sharma N (2003) Mushroom tyrosinase: recent prospects. J Agric Food Chem 51:2837–2853

    CAS  Article  Google Scholar 

  44. 44.

    Ibarra-Escutia P, Gómez JJ, Calas-Blanchard C, Marty JL, Ramírez-Silva MT (2010) Amperometric biosensor based on a high resolution photopolymer deposited onto a screen-printed electrode for phenolic compounds monitoring in tea infusions. Talanta 81:1636–1642

    CAS  Article  Google Scholar 

Download references


The authors greatly acknowledge the European Commission for financial support through the project “Nutra-Snacks” (FOOD-CT-2005-023044).

Author information



Corresponding author

Correspondence to Montserrat Cortina-Puig.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cortina-Puig, M., Muñoz-Berbel, X., Calas-Blanchard, C. et al. Diazonium-functionalized tyrosinase-based biosensor for the detection of tea polyphenols. Microchim Acta 171, 187–193 (2010). https://doi.org/10.1007/s00604-010-0425-y

Download citation


  • Biosensor
  • Tyrosinase
  • Diazonium salt
  • Phenolic compounds
  • Tea
  • Screen-printed gold electrodes