Skip to main content
Log in

Spectrophotometric detection of lead(II) ion using unimolecular peroxidase-like deoxyribozyme

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Deoxyribonucleic acid (DNA) can form G-quadruplexes in the presence of certain metal ions. These play a functional role in a variety of biological process. A DNA 17-mer (PW17) was previously reported to bind hemin in the presence of excess potassium ion. The resulting stabilized G-quadruplex-hemin complex exhibits peroxidase-like activity. However, this activity is lost in the presence of one equivalent of Pb2+ ion. We exploit this property in a method for spectrophotometric detection of Pb2+. Inhibition by Pb2+ ion is reflected by a change in the Soret band of hemin and a sharp reduction in the catalytic activity towards hydrogen peroxide-mediated chromogenic oxidation of 2,2′-azino-bis(3-ethylbenzothiazoline)-6-sulfonate. The new method enables Pb2+ to be detected in the concentration range from 0.05 to 1.2 μM, with a detection limit of 27 nM. The assay shows high selectivity over other metal ions. It was successfully used to determine Pb2+ in water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Miyawaki A, Liopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY (1997) Nature 388:882–887

    Article  CAS  Google Scholar 

  2. Nolan EM, Lippard SJ (2003) J Am Chem Soc 125:14270–14271

    Article  CAS  Google Scholar 

  3. Turner APF (2000) Science 290:1315–1317

    Article  CAS  Google Scholar 

  4. Walkup GK, Imperiali B (1996) J Am Chem Soc 118:3053–3054

    Article  CAS  Google Scholar 

  5. Rodriguez BB, Bolbot JA, Tothill IE (2004) Biosens Bioelectron 19:1157–1167

    Article  CAS  Google Scholar 

  6. Baralkiewicz D, Kozka M, Gramowska H, Barbara TB, Wasinkiewicz K (2004) Int J Environ Anal Chem 84:901–908

    Article  CAS  Google Scholar 

  7. Berkkan A, Ertas N (2004) Talanta 64:423–427

    Article  CAS  Google Scholar 

  8. Ganjali MR, Babaei LH, Badaei LH, Ziarani GM, Tarlani A (2004) Anal Sci 20:725–729

    Article  CAS  Google Scholar 

  9. Zhang JS, Li LH, Zhang JP, Jin QH (2004) Chem J Chinese U 25:1248–1250

    CAS  Google Scholar 

  10. Hsieh HF, Chang WS, Hsieh YK, Wang CF (2009) Talanta 79:183–188

    Article  CAS  Google Scholar 

  11. Petrov PK, Wibetoe G, Tsalev DL (2006) Spectrochim Acta Part B 61:50–57

    Article  Google Scholar 

  12. Resano M, Marzo P, Perez-Arantegui J, Aramendia M, Cloquet C, Vanhaecke F (2008) J Anal At Spectrom 23:1182–1191

    Article  CAS  Google Scholar 

  13. Goldcamp MJ, Underwood MN, Cloud JL, Harshman S, Ashley K (2008) J Chem Educ 85:976–979

    Article  CAS  Google Scholar 

  14. Rievaj M, Tomcik P, Cernanska M, Janosikova Z, Bustin D (2008) Chem Anal 53:717–723

    CAS  Google Scholar 

  15. Rodriguez JA, Ibarra IS, Galan-Vidal CA, Vega M, Barrado E (2009) Electroanalysis 21:452–458

    Article  CAS  Google Scholar 

  16. Ebdon L, Hill SJ, Rivas C (1998) Spectrochim Acta Part B 53:289–297

    Article  Google Scholar 

  17. Pan YH, Liu XS, He XQ, Wang CH (2005) Chin J Anal Chem 33:1560–1564

    CAS  Google Scholar 

  18. Szpunar J, Pellerin P, Makarov A, Doco T, Williams P, Medina B, Lobinski R (1998) J Anal At Spectrom 13:749–754

    Article  CAS  Google Scholar 

  19. Dai SJ, Zhang XS, Yu LY, Yang YJ (2010) Spectrochim Acta Part B 75:330–333

    Article  Google Scholar 

  20. Aracama NZ, Araujo AN, Perez-Olmos R (2004) Anal Sci 20:679–682

    Article  CAS  Google Scholar 

  21. Chen YY, Chang HT, Shiang YC, Hung YL, Chiang CK, Huang CC (2009) Anal Chem 81:9433–9439

    Article  CAS  Google Scholar 

  22. Fatoki OS (1987) Environ Int 13:369–373

    Article  CAS  Google Scholar 

  23. Lau KT, McHugh E, Baldwin S, Diamond D (2006) Anal Chim Acta 569:221–226

    Article  CAS  Google Scholar 

  24. Ruengsitagoon W, Chisvert A, Liawruanggrath S (2004) Talanta 62:709–713

    Google Scholar 

  25. Xue H, Tang XJ, Wu LZ, Zhang LP, Tung CH (2005) J Org Chem 70:9727–9734

    Article  CAS  Google Scholar 

  26. Huang KW, Yu CJ, Tseng WL (2010) Biosens Bioelectron 25:984–989

    Article  CAS  Google Scholar 

  27. Liu JW, Lu Y (2004) J Am Chem Soc 126:12298–122305

    Article  CAS  Google Scholar 

  28. Liu JW, Lu Y (2004) Chem Mater 16:3231–3238

    Article  CAS  Google Scholar 

  29. Wang ZD, Lee JH, Lu Y (2008) Adv Mater 20:3263–3267

    Article  CAS  Google Scholar 

  30. Wei H, Li BL, Li J, Dong SJ, Wang EK (2008) Nanotechnology 19:095501

    Article  Google Scholar 

  31. Asano T, Yabusaki K, Wang PC, Lwasaki A (2010) Spectrochim Acta Part A 75:819–824

    Article  Google Scholar 

  32. Ranyuk E, Douaihy CM, Bessmertnykh A, Denat F, Averin A, Beletskaya I, Guilard R (2009) Org Lett 11:987–990

    Article  CAS  Google Scholar 

  33. Breaker RR, Joyce GF (1994) Chem Biol 1:223–229

    Article  CAS  Google Scholar 

  34. Niazov T, Pavlov V, Xiao Y, Gill R, Willner I (2004) Nano Lett 4:1683–1687

    Article  CAS  Google Scholar 

  35. Pavlov V, Xiao Y, Gill R, Dishon A, Kotler M, Willner I (2004) Anal Chem 76:2152–2156

    Article  CAS  Google Scholar 

  36. Cheglakov Z, Weizmann Y, Beissenhirtz MK, Willner I (2006) Chem Commun 3205-3207

  37. Elbaz J, Shlyahovsky B, Li D, Willner I (2008) ChemBiochem 9:232–239

    Article  CAS  Google Scholar 

  38. Li D, Shlyahovsky B, Elbaz J, Willner I (2007) J Am Chem Soc 129:5804–5805

    Article  CAS  Google Scholar 

  39. Shlyahovsky B, Li D, Katz E, Willner I (2007) Biosens Bioelectron 22:2570–2576

    Article  CAS  Google Scholar 

  40. Li T, Wang EK, Dong SJ (2009) J Am Chem Soc 131:15082–15083

    Article  CAS  Google Scholar 

  41. Travascio P, Li YF, Sen D (1998) Chem Biol 5:505–517

    Article  CAS  Google Scholar 

  42. Travascio P, Bennet AJ, Wang DY, Sen D (1999) Chem Biol 6:779–787

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 20890022), the National Key Basic Research Development Project of China (No. 2010CB933602) and the Project of Chinese Academy of Sciences (No.KJCX2-YW-H09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiurong Yang.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Fig. S1

(DOC 21861 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Wang, J., Yang, F. et al. Spectrophotometric detection of lead(II) ion using unimolecular peroxidase-like deoxyribozyme. Microchim Acta 171, 195–201 (2010). https://doi.org/10.1007/s00604-010-0418-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-010-0418-x

Keywords

Navigation