Skip to main content

Advertisement

Log in

The electrocatalytic activity of a supramolecular assembly of CoTsPc/FeT4MPyP on multi-walled carbon nanotubes towards L-glutathione, and its determination in human erythrocytes

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The electrocatalytic activity of a supramolecular complex based on cobalt(II) phthalocyanine tetrasulfonate and iron(III) tetra-(N-methyl-4-pyridyl)-porphyrin adsorbed on multi-walled carbon nanotubes for the oxidation of L-glutathione (GSH) was investigated at pH 7.4. Scanning electron microscopy and energy dispersive X-ray spectrometry were used to characterize the morphologies and composition of the materials. The modified electrode displayed efficient electrocatalytic activity in terms of oxidation of GSH at an oxidation potential of 0 V (versus Ag/AgCl). Cyclic voltammetry and amperometry indicated that the oxidation involves 2-electrons, with a heterogeneous rate constant of 4.9 × 105 mol−1 L s−1. The response is linear from 2 to 210 μmol  L-1, the sensitivity is 1570 μA L mmol−1, the detection limit is 0.03 μmol L−1, and the relative standard deviation of 110 μmol L−1 GSH was 2.6% (n = 10). The modified electrode was applied to the determination of GSH in erythrocytes and the results were in agreement with those obtained by a method reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wildgoose GG, Banks CE, Leventis HC, Compton RG (2006) Chemically modified carbon nanotubes for use in electroanalysis. Microchim Acta 152:187–214

    Article  CAS  Google Scholar 

  2. Wildgoose GG, Wilkins SJ, Williams GR, France RR, Carnahan DL, Jiang L, Jones TGJ, Compton RG (2005) Graphite powder and multiwalled carbon nanotubes chemically modified with 4-nitrobenzylamine. Chem Phys Chem 6:352–362

    CAS  Google Scholar 

  3. Zhang J, Lee JK, Wu Y (2003) Photoluminescence and electronic interaction of anthracene derivatives adsorbed on sidewalls of single-walled carbon nanotubes. Nano Lett 3:403–407

    Article  CAS  Google Scholar 

  4. Li Q, Zhang J (2004) Thionine-mediated chemistry of carbon nanotubes. Carbon 42:287–291

    Article  CAS  Google Scholar 

  5. Banks CE, Davies TJ, Wildgoose GG, Compton RG (2005) Electrocatalysis at graphite and carbon nanotube modified electrodes: edge-plane sites and tube ends are the reactive sites. Chem Commun 7:829–841

    Article  Google Scholar 

  6. Wantz F, Banks CE, Compton RG (2005) Direct oxidation of ascorbic acid at an edge plane pyrolytic graphite electrode: a comparison of the electroanalytical response with other carbon electrodes. Electroanalysis 17:1529–1533

    Article  CAS  Google Scholar 

  7. Banks CE, Moore RR, Davies TJ, Compton RG (2004) Investigation of modified basal plane pyrolytic graphite electrodes: definitive evidence for the electrocatalytic properties of the ends of carbon nanotubes. Chem Commun 14:1804–1805

    Article  Google Scholar 

  8. Luz RCS, Damos FS, Tanaka AA, Kubota LT, Gushikem Y (2008) Electrocatalytical activity of 2, 3, 5, 6-tetrachloro-1, 4-benzoquinone/multiwalled carbon nanotubes imobilized on edge plane pyrolytic graphite electrode for NADH oxidation. Electrochimica Acta 53:4706–4714

    Article  CAS  Google Scholar 

  9. Banks CE, Compton RG (2005) Exploring the electrocatalytic sites of carbon nanotubes for NADH detection: an edge plane pyrolytic graphite electrode study. Analyst 130:1232–1239

    Article  CAS  Google Scholar 

  10. Lawrence NS, Deo RP, Wang J (2005) Comparison of the electrochemical reactivity of electrodes modified with carbon nanotubes from different sources. Electroanalysis 17:65–72

    Article  CAS  Google Scholar 

  11. Chen J, He Z, Liu H, Cha C (2006) Electrochemical determination of reduced glutathione (GSH) by applying the powder microelectrode technique. J Electroanal Chem 588:324–330

    Article  CAS  Google Scholar 

  12. Griffith OW (1999) Biologic and pharmacologic regulation of mammalian glutathione synthesis. Free Rad Biol Med 27:922–935

    Article  CAS  Google Scholar 

  13. Droge W, Breitkreutz R (2000) Glutathione and immune function. Proc Nutr Soc 59:595–600

    CAS  Google Scholar 

  14. Weber JH, Busch DH (1965) Complexes derived from strong field ligands. XIX. Magnetic properties of transition metal derivatives of 4, 4′, 4″, 4‴-Tetrasulfophthalocyanine. Inorg Chem 4:469–471

    Article  CAS  Google Scholar 

  15. Pillay J, Ozoemena KI (2007) Efficient electron transport across nickel powder modified basal plane pyrolytic graphite electrode: Sensitive detection of sulfhydryl degradation products of the V-type nerve agents. Electrochem Comm 9:1816–1823

    Article  CAS  Google Scholar 

  16. Siswana MP, Ozoemena KI, Nyokong T (2006) Electrocatalysis of asulam on cobalt phthalocyanine modified multi-walled carbon nanotubes immobilized on a basal plane pyrolytic graphite electrode. Electrochim Acta 52:114–122

    Article  CAS  Google Scholar 

  17. Wang J (1994) Analytical electrochemistry. VCH Publishers Inc., New York

    Google Scholar 

  18. Bard AJ, Faulkner LR (2001) Electrochemical methods: Fundamentals and applications, 2nd edn. Wiley, Hoboken

    Google Scholar 

  19. Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106:207–212

    Article  CAS  Google Scholar 

  20. Mayer I, Nakamura M, Toma HE, Araki K (2006) Multielectronic redox and electrocatalytic supramolecular films based on a tetraruthenated iron porphyrin. Electrochim Acta 52:263–271

    Article  CAS  Google Scholar 

  21. Manisankar P, Gomathi A, Velayutham D (2005) Oxygen reduction at the surface of glassy carbon electrodes modified with anthraquinone derivatives and dyes. J Solid State Electrochem 9:601–608

    Article  CAS  Google Scholar 

  22. Kim MA, Lee WY (2003) Amperometric phenol biosensor based on sol–gel silicate/Nafion composite film. Anal Chim Acta 479:143–150

    Article  CAS  Google Scholar 

  23. Salimi A, Pourbeyram S (2003) Renewable sol–gel carbon ceramic electrodes modified with a Ru-complex for the amperometric detection of -cysteine and glutathione. Talanta 60:205–214

    Article  CAS  Google Scholar 

  24. Bockis JOM, Reddy AK, Gamboa-Aldeco M (2000) Modern Electrochemistry 2A: Fundamentals of Electrodics, 2nd edn. Kluwer Academic/Plenum, New York

    Google Scholar 

  25. Sabzi RE (2005) Electrocatalytic oxidation of thiosulfate at glassy carbon electrode chemically modified with cobalt pentacyanonitrosylferrate. J Braz Chem Soc 16:1262–1268

    Article  CAS  Google Scholar 

  26. Inoue T, Kirchhoff JR (2000) Modified tubular electrode in a multi-commutated flow system: determination of acetaminophen in blood serum and pharmaceutical formulations. Anal Chem 72:5755–5770

    Article  CAS  Google Scholar 

  27. Jin WR, Chen HF (2000) A new method of determination of diffusion coefficients using capillary zone electrophoresis (peak-height method). Chromatographia 52:17–21

    Article  Google Scholar 

  28. Mireski V, Lovri M (1999) Quasireversible maximum in cathodic stripping square-wave voltammetry. Electroanalysis 11:984–989

    Article  Google Scholar 

  29. Analytical Methods Committee (1987) Analyst 112:199–204

    Article  Google Scholar 

  30. Chen G, Zhang LY, Wang J (2004) Miniaturized capillary electrophoresis system with a carbon nanotube microelectrode for rapid separation and detection of thiols. Talanta 64:1018–1023

    Article  CAS  Google Scholar 

  31. Gong KP, Zhang MN, Yan YM, Su L, Mao LQ, Xiong SX, Chen Y (2004) Sol−gel-derived ceramic−carbon nanotube nanocomposite electrodes: tunable electrode dimension and potential electrochemical applications. Anal Chem 76:6500–6505

    Article  CAS  Google Scholar 

  32. Tang EH, Chen J, Nie L, Yao S, Kuang Y (2006) Electrochemical oxidation of glutathione at well-aligned carbon nanotube array electrode. Electrochim Acta 51:3046–3051

    Article  CAS  Google Scholar 

  33. Rover L Jr, Kubota LT, Höehr NF (2001) Development of an amperometric biosensor based on glutathione peroxidase immobilized in a carbodiimide matrix for the analysis of reduced glutathione from serum. Clin Chim Acta 308:55–67

    Article  CAS  Google Scholar 

  34. Calvo-Marzal P, Chumbimuni-Torres KY, Hoehr NF, Kubota LT (2006) Determination of glutathione in hemolysed erythrocyte with amperometric sensor based on TTF-TCNQ. Clin Chim Acta 371:152–158

    Article  CAS  Google Scholar 

  35. Luz RCS, Damos FS, Gandra PG, Macedo DV, Tanaka AA, Kubota LT (2007) Electrocatalytic determination of reduced glutathione in human erythrocytes. Anal Bioanal Chem 387:1891–1897

    Article  CAS  Google Scholar 

  36. Moore RR, Banks CE, Compton RG (2004) Electrocatalytic detection of thiols using an edge plane pyrolytic graphite electrode. Analyst 129:755–758

    Article  CAS  Google Scholar 

  37. Fernandes JCB, Kubota LT, Neto GO (1999) Potentiometric biosensor for -ascorbic acid based on ascorbate oxidase of natural source immobilized on ethylene–vinylacetate membrane. Anal Chim Acta 385:3–12

    Article  CAS  Google Scholar 

  38. Silva MLS, Garcia MBQ, Lima JLFC, Barrado E (2006) Modified tubular electrode in a multi-commutated flow system: determination of acetaminophen in blood serum and pharmaceutical formulations. Anal Chim Acta 573–574:383–390

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rita C. S. Luz or Flavio S. Damos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luz, R.C.S., Maroneze, C.M., Tanaka, A.A. et al. The electrocatalytic activity of a supramolecular assembly of CoTsPc/FeT4MPyP on multi-walled carbon nanotubes towards L-glutathione, and its determination in human erythrocytes. Microchim Acta 171, 169–178 (2010). https://doi.org/10.1007/s00604-010-0417-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-010-0417-y

Keywords

Navigation