Skip to main content
Log in

Fabrication and characterization of copper nanoparticles using thermal reduction: The effect of nonionic surfactants on size and yield of nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Thermal reduction has been applied to the preparation of copper nanoparticles (Cu-NPs) using three kinds of nonionic surfactants (Triton X-100, Tween-80, and dodecylamine). The Cu-NPs were formed by decomposition of copper(II) oxalate in presence of triphenylphosphine. The effect of the surfactants on the formation of the Cu-NPs was studied via X-ray diffraction, scanning electron microscopy, energy dispersive analysis of X-rays, transmission electron microscopy, thermogravimetric differential thermal analyses, and Fourier transform infra-red spectroscopy. It is shown that the Cu-NPs have an fcc crystal structure. Depending on the surfactant used, Cu-NPs with diameters between 8 and 20 nm can be prepared. The smallest Cu-NPs (8 nm) were formed in the presence of micelles of dodecylamine (yield 49%), while the largest particles (20 nm) were obtained with Triton X-100 (yield 99%). The use of Triton X-100 results in the highest yield and most uniform Cu-NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ozin GA (1992) Nanochemistry: synthesis in diminishing dimensions. Adv Mater 4:612–649

    Article  CAS  Google Scholar 

  2. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-sizerelated properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  3. Hayat MA (1989) Colloidal gold: principles, methods and applications, vol I. Academic, New York

    Google Scholar 

  4. Abdulla-Al-Mamun M, Kusumoto Y, Muruganandham M (2009) Simple new synthesis of copper nanoparticles in water/acetonitrile mixed solvent and their characterization. Mater Lett 63:2007–2009

    Article  CAS  Google Scholar 

  5. Arul Dhas N, Paul Raj C, Gedanken A (1998) Synthesis, characterization, and properties of metallic copper nanoparticles. Chem Mater 10:1446–1452

    Article  Google Scholar 

  6. Vitulli G, Bernini M, Bertozzi S, Pitzalis E, Salvadori P, Coluccia S et al (2002) Nanoscale copper particles derived from solvated Cu atoms in the activation of molecular oxygen. Chem Mater 14:1183–1186

    Article  CAS  Google Scholar 

  7. Huang HH, Yan FQ, Kek YM et al (1997) Synthesis, characterization, and nonlinear optical properties of copper nanoparticles. Langmuir 13:172–175

    Article  CAS  Google Scholar 

  8. Liu Z, Bando YA (2003) Novel method for preparing copper nanorods and nanowires. Adv Mater 15:303–305

    Article  CAS  Google Scholar 

  9. Campbell CT, Daube KA, White JM (1987) Cu/ZnO(0001) and Cu(111): model catalysts for methanol synthesis. Surf Sci 182:458–478

    Article  CAS  Google Scholar 

  10. Shiau CY, Tsai JC (1997) Cu/Al2O3 catalyst prepared by electrolyses method. J Chin Chem Eng 28:55–59

    Google Scholar 

  11. Van der Meijden J (1981) PhD Thesis, Utrecht, The Netherlands

  12. Du FL, Cui ZL, Zhang ZK, Chen SY (1997) Behavior of supported nano-copper catalyst in CO oxidation. J Nat Gas Chem 6:135–139

    CAS  Google Scholar 

  13. Dhas NA, Raj CP, Gedanken A (1998) Synthesis, characterization, and properties of metallic copper nanoparticles. Chem Mater 10:1446–1451

    Article  CAS  Google Scholar 

  14. Kijenski J, Niedzielski PJ, Baiker A (1989) Synthesis of cyclic amines and their alkyl derivatives from amino-alcohols over supported copper catalysts. Appl Catal 53:107–112

    Article  CAS  Google Scholar 

  15. Gredig SV, Koppel RA, Baiker A (1997) Synthesis of methylamines from carbon dioxide, hydrogen and ammonia over supported copper catalysts: influence of support. J Mol Catal A: Chem 127:133–138

    Article  CAS  Google Scholar 

  16. Pereia R, Rufo M, Schuchardt U (1994) Copper (II) catalyzed oxidation of cyclohexane by tert-butyl hydroperoxide. J Braz Chem Soc 5:83–88

    Google Scholar 

  17. Shannon IJ, Rey F, Sankar G, Thomas JM, Maschmeyer T, Waller AM, Palomares AE, Corma A, Dent AJ, Greaves GN (1996) Hydrotalcite-derived mixed oxides containing copper: catalysts for the removal of nitric oxide. J Chem Soc Farad Trans 92:4331–4336

    Article  CAS  Google Scholar 

  18. Ayaappan S, Gopalan RS, Subbanna GN, Rao CNR (1997) Nanoparticles of Ag, Au, Pd, and Cu produced by alcohol reduction of the salts. J Mater Res 12:398–404

    Article  Google Scholar 

  19. Lisieski I, Pileni MP (1993) Synthesis of copper clusters using reverse micelles as microreactors. J Am Chem Soc 115:3887–3892

    Article  Google Scholar 

  20. Lisieski I, Pileni MP (1995) Copper metallic particles synthesized “in situ” in reverse micelles: influence of various parameters on the size of particles. J Phys Chem 99:5077–5081

    Article  Google Scholar 

  21. Lisieski I, Billoudet F, Pileni MP (1996) Control of the shape and the size of copper metallic particles. J Phys Chem 100:4160–4166

    Article  Google Scholar 

  22. Vorobyova SA, Mushinsky VV, Lesnikovich AI (1997) Copper oxide produced by two-phase synthesis in “octane water” system. Dokl Acad Sci Belarus 41:62–67

    CAS  Google Scholar 

  23. Ding J, Tsuzuki T, McCormick PG, Street R (1996) Ultrafine Cu articles prepared by mechanical process. J Alloys Comp 234:L1–L8

    Article  CAS  Google Scholar 

  24. Weins WN, Makinson JD, Angelis D, Axtell SC (1997) Low-frequency internal friction studies of nanocrystalline copper. Nanostruct Mater 9:509–514

    Article  CAS  Google Scholar 

  25. Kellerson A, Knozinger E, Langel W, Giersig M (1995) Cu2O quantum-dot particles prepared from nanostructured copper. Adv Mater 7:652–659

    Article  Google Scholar 

  26. Haas V, Birringer R (1992) The morphology and size of nano structured Cu, Pd, and W generated by sputtering. Nanostruct Mater 1:491–499

    Article  CAS  Google Scholar 

  27. Champion Y, Bigot J (1996) Characterization of nanocrystalline copper powders preparing by melting in a cryogenic liquid. Mater Sci Eng A 217(218):58–64

    Google Scholar 

  28. Girardin D, Maurer M (1990) Ultrafine metallic powders prepared by high pressure plasma: synthesis and characterization. Mat Res Bull 25:119–125

    Article  CAS  Google Scholar 

  29. Bouland D, Chouard JC, Briand A, Chartier F, Lacour JL, Mauchien P, Mermet JM (1992) Experimental study of aerosol production by laser ablation. J Aerosol Sci 23(1):225–229

    Article  Google Scholar 

  30. Long NJ, Petford-Long AK (1986) In situ Electron-beaminduced reduction of CuO: a study of phase transformation in cupric oxide. Ultramicroscopy 20:151–157

    Article  CAS  Google Scholar 

  31. Salavati-Niasari M, Davar F, Mir N (2008) Synthesis and characterization of metallic copper nanoparticles via thermal decomposition. Polyhedron 27:3514–3518

    Article  CAS  Google Scholar 

  32. Salavati-Niasari M, Davar F (2009) Synthesis of copper and copper(I) oxide nanoparticles by thermal decomposition of a new precursor. Mater Lett 63:441–443

    Article  CAS  Google Scholar 

  33. Salavati-Niasari M, Fereshteh Z, Davar F (2009) Synthesis of oleylamine capped copper nanocrystals via thermal reduction of a new precursor. Polyhedron 28:126–130

    Article  CAS  Google Scholar 

  34. Zhong CJ, Luo J, Maye MM, Han L, Kariuki NN (2004) In: Zhou B, Hermans S, Somorjai GA (eds) Nanotechnology in catalysis, vol 1. Kluwer Academic/Plenum, New York, pp 222–248, Chapter 11

    Google Scholar 

  35. Zhong CJ, Kotov NA, Daniell W, Zamborini FP (2006) In: Warrendale PA (ed) Nanoparticles and Nanostructures in Sensors and Catalysis; MRS Proceedings; Vol. 900E

Download references

Acknowledgements

The authors wish to thank the University of Isfahan for financially supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hossein Habibi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1344 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Habibi, M.H., Kamrani, R. & Mokhtari, R. Fabrication and characterization of copper nanoparticles using thermal reduction: The effect of nonionic surfactants on size and yield of nanoparticles. Microchim Acta 171, 91–95 (2010). https://doi.org/10.1007/s00604-010-0413-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-010-0413-2

Keywords

Navigation