Skip to main content
Log in

A novel one-step electrochemical codeposition of carbon nanotubes-DNA hybrids and tiron doped polypyrrole for selective and sensitive determination of dopamine

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We describe a novel sensor for dopamine. It is based on the use of polypyrrole doped with a carbon nanotube-DNA hybrid. The composite material can be used as a matrix for immobilizing doping anions such as tiron which assist in electrostatic repulsion of anions such as ascorbate and others. The sensor was used for highly selective and sensitive determination of dopamine. Parameters affecting the response were optimized. The sensor displays a wide dynamic range, a detection limit as low as 0.5 pM, high stability, and good reproducibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Niranjana E, Swamy BE, Naik RR, Sherigara BS, Jayadevappa H (2009) Electrochemical investigations of potassium ferricyanide and dopamine by sodium dodecyl sulphate modified carbon paste electrode: A cyclic voltammetric study. J Electroanal Chem 631:1

    Article  CAS  Google Scholar 

  2. Zhang R, Jin GD, Chen D, Hu XY (2009) Simultaneous electrochemical determination of dopamine, ascorbic acid and uric acid using poly(acid chrome blue K) modified glassy carbon electrode. Sens Actuators B 138:174

    Article  Google Scholar 

  3. Saito AN, Liu J, Doyon J, Dagher A (2009) Dopamine modulates default mode network deactivation in elderly individuals during the Tower of London task. Neurosci Lett 458:1

    Article  Google Scholar 

  4. Njagi J, Chernov M, Leiter J, Andreescu S (2010) Amperometric Detection of Dopamine in Vivo with an Enzyme Based Carbon Fiber Microbiosensor. Anal Chem 82:989

    Article  CAS  Google Scholar 

  5. Chou J, Ilgen TJ, Gordon S, Ranasinghe AD, McFarland EW, Metiu H, Buratto SK (2009) Investigation of the enhanced signals from cations and dopamine in electrochemical sensors coated with Nafion. J Electroanal Chem 632:97

    Article  CAS  Google Scholar 

  6. Shams E, Babaei A, Taheri AR, Kooshki M (2009) Voltammetric determination of dopamine at a zirconium phosphated silica gel modified carbon paste electrode. Bioelectrochemistry 75:83

    Article  CAS  Google Scholar 

  7. Morenoa M, Arribas A, Bermejo E, Chicharro M, Zapardiel A, Rodríguez M, Jalit Y, Rivas G (2010) Selective detection of dopamine in the presence of ascorbic acid using carbon nanotube modified screen-printed electrodes. Talanta 80:2149

    Article  Google Scholar 

  8. Yasuda S, Yasuda T, Hui Y, Liu MY, Suiko M, Sakakibara Y, Liu MC (2009) Concerted action of the cytosolic sulfotransferase, SULT1A3, and catechol-O-methyltransferase in the metabolism of dopamine in SK-N-MC human neuroblastoma cells. Neurosci Res 64:273

    Article  CAS  Google Scholar 

  9. Bernsmann F, Ponche A, Ringwald C, Hemmerle J, Raya J, Bechinger B, Voegel JC, Schaaf P, Ball V (2009) Characterization of Dopamine-Melanin Growth on Silicon Oxide. J Phys Chem C 113:8234

    Article  CAS  Google Scholar 

  10. Ajayan PM (1999) Nanotubes from Carbon. Chem Rev 99:1787

    Article  CAS  Google Scholar 

  11. Nakashima N, Okuzono S, Murakami H, Nakai T, Yoshikawa K (2003) DNA Dissolves Single-walled Carbon Nanotubes in Water. Chem Lett 32:465

    Article  Google Scholar 

  12. Dwyer C, Guthold M, Falvo M, Washburn S, Superfine R, Erie D (2002) DNA-functionalized single-walled carbon nanotubes. Nanotechnology 13:601

    Article  CAS  Google Scholar 

  13. Cai H, Cao X, Jiang Y, He P, Fang Y (2003) Carbon nanotube-enhanced electrochemical DNA biosensor for DNA hybridization detection. Anal Bioanal Chem 375:287

    CAS  Google Scholar 

  14. Cathcart H, Quinn S, Nicolosi V, Kelly JM, Blau WJ, Coleman JN (2007) Spontaneous Debundling of Single-Walled Carbon Nanotubes in DNA-Based Dispersions. J Phys Chem C 111:66

    Article  CAS  Google Scholar 

  15. Gigliotti B, Sakizzie B, Bethune DS, Shelby RM, Cha JN (2006) Sequence-Independent Helical Wrapping of Single-Walled Carbon Nanotubes by Long Genomic DNA. Nano Lett 6:159

    Article  CAS  Google Scholar 

  16. Ma Y, Ali SR, Dodoo AS, He H (2006) Enhanced Sensitivity for Biosensors: Multiple Functions of DNA-Wrapped Single-Walled Carbon Nanotubes in Self-Doped Polyaniline Nanocomposites. J Phys Chem B 110:16359

    Article  CAS  Google Scholar 

  17. Fagan JA, Landi BJ, Mandelbaum I, Simpson JR, Bajpai V, Bauer BJ, Migler K, Walker AR, Raffaelle R, Hobbie EK (2006) Comparative Measures of Single-Wall Carbon Nanotube Dispersion. J Phys Chem B 110:23801

    Article  CAS  Google Scholar 

  18. Noguchi Y, Fujigaya T, Niidome Y, Nakashima N (2008) Single-walled carbon nanotubes/DNA hybrids in water are highly stable. Chem Phys Lett 455:249

    Article  CAS  Google Scholar 

  19. Guo M, Chen J, Liu D, Nie L, Yao S (2004) Electrochemical characteristics of the immobilization of calf thymus DNA molecules on multi-walled carbon nanotubes. Bioelectrochemistry 62:29

    Article  CAS  Google Scholar 

  20. Daniel S, Rao TP, Rao KS, Rani SU, Naidu GR, Lee HY, Kawai T (2007) A review of DNA functionalized/grafted carbon nanotubes and their characterization. Sens Actuators B 122:672

    Article  Google Scholar 

  21. Liu Y, Wei W (2008) Layer-by-layer assembled DNA functionalized single-walled carbon nanotube hybrids for arsenic(III) detection. Electrochem Commun 10:872

    Article  CAS  Google Scholar 

  22. Zeng X, Li X, Liu X, Liu Y, Luo S, Kong B, Yang S, Wei W (2009) A third-generation hydrogen peroxide biosensor based on horseradish peroxidase immobilized on DNA functionalized carbon nanotubes. Biosens Bioelectron 25:896

    Article  CAS  Google Scholar 

  23. Xu Y, Pehrsson P, Chen L, Zhang R, Zhao W (2007) Double-Stranded DNA Single-Walled Carbon Nanotube Hybrids for Optical Hydrogen Peroxide and Glucose Sensing. J Phys Chem C 111:8638

    Article  CAS  Google Scholar 

  24. Staii C, Johnson A, Chen M, Gelperin A (2005) DNA-Decorated Carbon Nanotubes for Chemical Sensing. Nano Lett 5:1774

    Article  CAS  Google Scholar 

  25. Hu C, Zhang Y, Bao G, Zhang Y, Liu M, Wang Z (2005) DNA Functionalized Single-Walled Carbon Nanotubes for Electrochemical Detection. J Phys Chem B 109:20072

    Article  CAS  Google Scholar 

  26. Lien T, Lam T, An V, Hoang T, Quang D, Khieu D, Tsukahara T, Lee Y, Kim J (2010) Multi-wall carbon nanotubes (MWCNTs)-doped polypyrrole DNA biosensor for label-free detection of genetically modified organisms by QCM and EIS. Talanta 80:1164

    Article  CAS  Google Scholar 

  27. Jeong H, Jeon S (2008) Determination of Dopamine in the Presence of Ascorbic Acid by Nafion and Single-Walled Carbon Nanotube Film Modified on Carbon Fiber Microelectrode. Sensors 8:6924

    Article  CAS  Google Scholar 

  28. Zhou X, Zheng N, Hou S, Li X, Yuan Z (2010) Selective determination of dopamine in the presence of ascorbic acid at a multi-wall carbon nanotube-poly(3, 5-dihydroxy benzoic acid) film modified electrode. J Electroanal Chem 642:30

    Article  CAS  Google Scholar 

  29. Hughes M, Chen G, Shaffer M, Fray D, Windle A (2002) Electrochemical Capacitance of a Nanoporous Composite of Carbon Nanotubes and Polypyrrole. Chem Mater 14:1610

    Article  CAS  Google Scholar 

  30. Palmisano F, Malitesta C, Centonze D, Zmbonin P (1995) Correlation between Permselectivity and Chemical Structure of Overoxidized Polypyrrole Membranes Used in Electroproduced Enzyme Biosensors. Anal Chem 67:2207

    Article  CAS  Google Scholar 

  31. Shahrokhian S, Asadian E (2009) Electrochemical determination of L-dopa in the presence of ascorbic acid on the surface of the glassy carbon electrode modified by a bilayer of multi-walled carbon nanotube and poly-pyrrole doped with tiron. J Electroanal Chem 636:40

    Article  CAS  Google Scholar 

  32. Pomales G, Cabrera C (2007) Vertical attachment of DNA–CNT hybrids on gold. J Electroanal Chem 606:47

    Article  Google Scholar 

  33. Raj C, Ohsaka T (2001) Electroanalysis of ascorbate and dopamine at a gold electrode modified with a positively charged self-assembled monolayer. J Electroanal Chem 496:44

    Article  CAS  Google Scholar 

  34. Zhang M, Gong K, Zhang H, Mao L (2005) Layer-by-layer assembled carbon nanotubes for selective determination of dopamine in the presence of ascorbic acid. Biosens Bioelectron 20:1270

    Article  CAS  Google Scholar 

  35. Shang F, Zhou L, Mahmoud K, Hrapovic S, Liu Y, Moynihan H, Glennon J, Luong J (2009) Selective Nanomolar Detection of Dopamine Using a Boron-Doped Diamond Electrode Modified with an Electropolymerized Sulfobutylether-β-cyclodextrin-Doped Poly(N-acetyltyramine) and Polypyrrole Composite Film. Anal Chem 81:4089

    Article  CAS  Google Scholar 

  36. Li Y, Wang P, Wang L, Lin X (2007) Overoxidized polypyrrole film directed single-walled carbon nanotubes immobilization on glassy carbon electrode and its sensing applications. Biosens Bioelectron 22:3120

    Article  CAS  Google Scholar 

  37. Ulubay S, Dursun Z (2010) Cu nanoparticles incorporated polypyrrole modified GCE for sensitive simultaneous determination of dopamine and uric acid. Talanta 80:1461

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support from National Outstanding Youth Foundations of China, National Science Foundation of China (50725825) and Special Research Found for the Doctoral Program of Higher Education of China (20060532006) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shenglian Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Wei, W. & Luo, S. A novel one-step electrochemical codeposition of carbon nanotubes-DNA hybrids and tiron doped polypyrrole for selective and sensitive determination of dopamine. Microchim Acta 171, 109–116 (2010). https://doi.org/10.1007/s00604-010-0412-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-010-0412-3

Keywords

Navigation