Skip to main content
Log in

A novel method for D-arabinitol determination based on a nano-structured sensing film by one-step electrodeposition

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Copper nanoparticles (Cu-NPs) were incorporated into chitosan hydrogel to form a film on the surface of a glassy carbon electrode (GCE) leading to a sensing element for D-arabinitol with excellent oxidative catalytic activity. The electrochemical response to D-arabinitol was studied by cyclic voltammetry and differential pulse voltammetry. Operational parameters affecting the response were examined and optimized, and a simple and sensitive method was established for the determination of D-arabinitol. Response is linear in the concentration range from 10 μmol·L−1 to 10 mmol·L−1, and the limit of detection is 1.0 μmol·L−1. The method may be combined with separation techniques in order to analyze for the ratio of D- and L-arabinitol which is a diagnostic marker for candidiasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nett JE, Andes D (2008) Review of techniques for diagnosis of catheter-related Candida biofilm infections. Curr Fungal Infect Rep 2:237–243

    Article  Google Scholar 

  2. Walsh TJ, Chanock SJ (1998) Diagnosis of invasive fungal infections: advances in nonculture systems. Curr Clin Top Infect Dis 18:101–153

    CAS  Google Scholar 

  3. Hui M, Cheung SW, Chin ML, Chu KC, Chan RCY, Cheng AFB (2004) Development and application of a rapid diagnostic method for invasive Candidiasis by the detection of D-/L-arabinitol using gas chromatography/mass spectrometry. Diagn Microbiol Infec Dis 49:117–123

    Article  CAS  Google Scholar 

  4. Yeo SF, Wong B (2002) Current status of nonculture methods for diagnosis of invasive fungal infections. Clin Microbiol Rev 15:465–484

    Article  Google Scholar 

  5. Christensson B, Sigmundsdottir G, Larsson L (1999) D-arabinitol: a marker for invasive candidiasis. Med Mycol 37:391–396

    Article  CAS  Google Scholar 

  6. Kiehn TE, Bernard EM, Gold JWM, Armstrong D (1979) Candidiasis: detection by gas-liquid chromatography of D-arabinitol, a fungal metabolite, in human serum. Science 206:577–580

    Article  CAS  Google Scholar 

  7. Roboz J, Suzuki R, Holland JF (1980) Quantification of arabinitol in serum by selected ion monitoring as a diagnostic technique in invasive candidiasis. J Clin Microbiol 12:594–602

    CAS  Google Scholar 

  8. Wojnarowski W, Jaquet H, Glauser MP (1979) Arabinitol, a metabolite of Candida albicans. Experientia 35:945, (Abstract)

    Google Scholar 

  9. Yeo SF, Zhang Y, Schafer D, Campbell S, Wong B (2000) A rapid, automated enzymatic fluorometric assay for determination of D-arabinitol in serum. J Clin Microbiol 38:1439–1443

    CAS  Google Scholar 

  10. Hino M, Tatsumi N, Yamane T, Ohta IK, Takubo T, Yabuuchi M (2000) New enzymatic method for determining D-arabinitol in serum. J Basic Microbiol 40:363–368

    Article  CAS  Google Scholar 

  11. Morrison CJ, Hurst SF, Reiss E (2003) Competitive binding inhibition enzyme-linked immunosorbent assay that uses the secreted aspartyl proteinase of Candida albicans as an antigenic marker for diagnosis of disseminated candidiasis. Clin Dlagn Lab Immunol 10:835–848

    CAS  Google Scholar 

  12. Bernard EM, Christiansen LJ, Tsang SF, Kiehn TE, Armstrong D (1981) Rate of arabinitol production by pathogenic yeast species. J Clin Microbiol 14:189–194

    CAS  Google Scholar 

  13. Gold JW, Wong B, Bernard EM, Kiehn TE, Armstrong D (1983) Serum arabinitol concentrations and arabinitol/creatinine ratios in invasive candidiasis. J Infect Dis 147:504–513

    CAS  Google Scholar 

  14. Stradomska Z, Mielniczuk TJ (2002) Gas chromatographic determination of D- / L-arabinitol ratio in healthy Polish children. J Chromatogr B 773:175–181

    Article  CAS  Google Scholar 

  15. Salonen JH, Rimpiläinen M, Lehtonen L, Lehtonen OP, Nikoskelainen J (2001) Measurement of the D-arabinitol/L-arabinitol ratio in urine of neutropenic patients treated empirically with amphotericin B. Eur J Clin Microbiol Infect Dis 20:179–184

    Article  CAS  Google Scholar 

  16. Voegel PD, Baldwin RP (1996) Electrochemical detection with copper electrodes in liquid chromatography and capillary electrophoresis. Am Lab 28(39–40):42–5

    Google Scholar 

  17. Hughes S, Johnson DC (1983) Triple-pulse amperometric detection of carbohydrates after chromatographic separation. Anal Chim Acta 149:1–10

    Article  CAS  Google Scholar 

  18. Prabhu SV, Baldwin RP (1989) Electrocatalysis and detection of amino sugars, alditols, and acidic sugars at a copper-containing chemically modified electrode. Anal Chem 61:2258–2263

    Article  CAS  Google Scholar 

  19. Safina GR, Medyantseva EP, Fomina OG, Glushko NI, Budnikov GK (2005) Amperometric enzyme immunosensors for diagnosing certain infectious diseases. J Anal Chem 60:546–552

    Article  CAS  Google Scholar 

  20. Safina GR, Medyantseva EP, Bazarnova ON, Glushko NI, Budnikov GK (2006) Determination of bacterial antigens using a multichannel immunoenzyme amperometric sensor. J Anal Chem 61:912–916

    Article  CAS  Google Scholar 

  21. Katz E, Willner I, Wang J (2004) Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles. Electroanalysis 16:19–44

    Article  CAS  Google Scholar 

  22. Murray RW (2008) Nanoelectrochemistry: metal nanoparticles, nanoelectrodes, and nanopores. Chem Rev 108:2688–2720

    Article  CAS  Google Scholar 

  23. Male KB, Hrapovic S, Liu YL, Wang DS, Luong JHT (2004) Electrochemical detection of carbohydrates using copper nanoparticles and carbon nanotubes. Anal Chim Acta 516:35–41

    Article  CAS  Google Scholar 

  24. Colon LA, Dadoo R, Zare RN (1993) Determination of carbohydrates by capillary zone electrophoresis with amperometric detection at a copper microelectrode. Anal Chem 65:476–481

    Article  CAS  Google Scholar 

  25. Schwarz MA, Galliker B, Fluri K, Kappes T, Hauser PT (2001) A two-electrode configuration for simplified amperometric detection in a microfabricated electrophoretic separation device. Analyst 126:147–151

    Article  CAS  Google Scholar 

  26. Budnikov GK, Evtugin GA, Budnikova YG, Al’fonsov VA (2008) Chemically modified electrodes with amperometric response in enantioselective analysis. J Anal Chem 63:2–12

    CAS  Google Scholar 

  27. Luo MZ, Baldwin RP (1995) Characterization of carbohydrate oxidation at copper electrodes. J Electroanal Chem 387:87–94

    Article  Google Scholar 

  28. Miller B (1969) Split-ring disk study of the anodic processes at a copper electrode in alkaline solution. J Electrochem Soc 116:1675–1680

    Article  CAS  Google Scholar 

  29. Ashworth Y, Fairhurst D (1977) The anodic formation of Cu2O in alkaline solutions. J Electrochem Soc 124:506–517

    Article  CAS  Google Scholar 

  30. Fletcher S, Barradas RG, Porter JD (1978) The anodic oxidation of copper amalgam and polycrystalline copper electrodes in LiOH solution. J Electrochem Soc 125:1960–1968

    Article  CAS  Google Scholar 

  31. Abd El Haleem SM, Ateya BG (1981) Cyclic voltammetry of copper in sodium hydroxide solutions. J Electroanal Chem 117:309–319

    Article  CAS  Google Scholar 

  32. Pyun CH, Park SM (1986) In situ spectroelectrochemical studies on anodic oxidation of copper in alkaline solution. J Electrochem Soc 133:2024–2030

    Article  CAS  Google Scholar 

  33. Burke LD, Ahem MJG, Ryan TG (1990) An investigation of the anodic behavior of copper and its anodically produced oxides in aqueous solutions of high pH. J Electrochem Soc 137:553–561

    Article  CAS  Google Scholar 

  34. Zhao J, Wang F, Yu JJ, Hu SS (2006) Electro-oxidation of glucose at self-assembled monolayers incorporated by copper particles. Talanta 70:449–454

    Article  CAS  Google Scholar 

  35. Feng D, Wang F, Chen ZL (2009) Electrochemical glucose sensor based on one-step construction of gold nanoparticle-chitosan composite film. Sensor Actuat B-Chem 138:539–544

    Article  Google Scholar 

  36. Luo XL, Xu JJ, Du Y, Chen HY (2004) A glucose biosensor based on chitosan–glucose oxidase–gold nanoparticles biocomposite formed by onestep electrodeposition. Anal Biochem 334:284–289

    Article  CAS  Google Scholar 

  37. Larew LA, Johnson DC (1989) Concentration dependence of the mechanism of glucose oxidation at gold electrodes in alkaline media. J Electroanal Chem 262:167–182

    Article  CAS  Google Scholar 

  38. Adzic RR, Hsiao MW, Yeager EB (1989) Electrochemical oxidation of glucose on single crystal gold surfaces. J Electroanal Chem 260:475–485

    Article  CAS  Google Scholar 

  39. Vassilyev YB, Khazova OA, Nikolaeva NN (1985) Kinetics and mechanism of glucose electrooxidation on different electrode-catalysts: Part II. Effect of the nature of the electrode and the electrooxidation mechanism. J Electroanal Chem 196:127–144

    Article  Google Scholar 

  40. Ocón P, Alonso C, Celdrán R, Velasco JG (1986) Study of the electrooxidation of n-propanol on an Au electrode in basic medium. J Electroanal Chem 206:179–196

    Article  Google Scholar 

  41. Castro-Luna AM, de Mele MFL, Arvia AJ (1992) The electro-oxidation of glucose on microcolumnar gold electrodes in different neutral solutions. J Electroanal Chem 323:149–162

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Nos 60801020, 90817103, 20775055, 30973672) and start-up funding for ZC’s Luojia chair professorship of Wuhan University (Nos. 306276216, 306271159) and the Important National Science and Technology Specific Projects (No. 2009ZX09301-14). Authors would like to thank Prof. Shengshui Hu, Department of Chemistry, Wuhan University, for his support on the CHI instrument.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zilin Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, F., Liao, Y., Ren, Y. et al. A novel method for D-arabinitol determination based on a nano-structured sensing film by one-step electrodeposition. Microchim Acta 170, 9–15 (2010). https://doi.org/10.1007/s00604-010-0368-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-010-0368-3

Keywords

Navigation