Skip to main content
Log in

Electroanalytical performance of self-assembled monolayer gold electrode for chloramphenicol determination

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Monolayers of 2-mercapto-5-methylbenzimidazole (MMB) were prepared on a polycrystalline gold electrode via a self-assembly process to produce a self-assembled monolayer. The resulting electrode was investigated by cyclic voltammetry and electrochemical impedance spectroscopy, and applied to the determination of chloramphenicol (CAP) in a pharmaceutical formulation using flow injection analysis along with amperometric detection. The amperometric cell was operated at −0.75 V (vs Ag/AgCl) at a flow rate of 3 mL min−1. The method was applied to the determination of CAP in ophthalmic solutions, and its performance was compared to a previously validated HPLC method. The response to CAP is linear in the range from 0.050 to 1.000 µmol L−1 (r = 0.9990), and the limit of detection is 44 µmol L−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Shakila RJ, Vyla SAP, Kumar RS, Jeyasekaran G, Jasmine GI (2006) Stability of chloramphenicol residues in shrimp subjected to heat processing treatments. Food Microbiol 23:47–51

    Article  CAS  Google Scholar 

  2. Dumont V, Huet AC, Traynor I, Elliott C, Delahaut P (2006) A surface plasmon resonance biosensor assay for the simultaneous determination of thiamphenicol, florefenicol, florefenicol amine and chloramphenicol residues in shrimps. Anal Chim Acta 567:179–183

    Article  CAS  Google Scholar 

  3. Agüí L, Guzmán A, Yáñez-Sedeño P, Pingarrón JM (2002) Voltammetric determination of chloramphenicol in milk at electrochemically activated carbon fibre microelectrodes. Anal Chim Acta 461:65–73

    Article  Google Scholar 

  4. Chuanuwatanakul S, Chailapakul O, Motomizu S (2008) Electrochemical analysis of chloramphenicol using boron-doped diamond electrode applied to a flow-injection system. Anal Sci 24:493–498

    Article  CAS  Google Scholar 

  5. Xiao F, Zhao F, Li J, Yan R, Yu J, Zeng B (2007) Sensitive voltammetric determination of chloramphenicol by using single-wall carbon nanotubes-gold nanoparticle-ionic liquid composite film modified glassy carbon electrodes. Anal Chim Acta 596:79–85

    Article  CAS  Google Scholar 

  6. Martins-Júnior HA, Bustillos OV, Pires MAF (2006) Determination of chloramphenicol residues in industrialized Milk and honey samples using LC-MS/MS. Quim Nova 29:586–592

    Google Scholar 

  7. Rodziewicz L, Zawadzka I (2008) Rapid determination of chloramphenicol residues in milk powder by liquid chromatography–elektrospray ionization tandem mass spectrometry. Talanta 75:846–850

    Article  CAS  Google Scholar 

  8. Teixeira S, Matos CD, Alves A, Santos L (2008) Fast screening procedure for antibiotics in wastewaters by direct HPLC-DAD analysis. J Sep Sci 31:2924–2931

    Article  CAS  Google Scholar 

  9. Chen H, Chen H, Ying J, Huang J, Liao L (2009) Dispersive liquid-liquid microextraction followed by high-performance liquid chromatography as an efficient and sensitive technique for simultaneous determination of chloramphenicol and thiamphenicol in honey. Anal Chim Acta 632:80–85

    Article  CAS  Google Scholar 

  10. Guo L, Guan M, Zhao C, Zhang H (2008) Molecularly imprinted matrix solid-phase dispersion for extraction of chloramphenicol in fish tissues coupled with high-performance liquid chromatography determination. Anal Bioanal Chem 392:1431–1438

    Article  CAS  Google Scholar 

  11. Peng L, Yueming Q, Huixia C, Ying K, Yingzhang T, Daning W, Mengxia X (2006) Simultaneous determination of chloramphenicol, thiam-fenicol, and florfenicol residues in animal tissues by gas chromatography/mass spectrometry. Chin Chromatogr 24:14–18

    Article  Google Scholar 

  12. Zhang S, Liu Z, Guo X, Cheng L, Wang Z, Shen J (2008) Simultaneous determination and confirmation of chloramphenicol, thiamphenicol, florfenicol and florfenicol amine in chicken muscle by liquid chromatography-tandem mass spectrometry. J Chromatogr B 875:399–404

    Article  CAS  Google Scholar 

  13. Viñas P, Balsalobre N, Hernández-Córdoba M (2006) Determination of chloramphenicol in residues in animal feeds by liquid chromatography with photo-diode array detection. Anal Chim Acta 558:11–15

    Article  Google Scholar 

  14. Iqbal MS, Shad MA, Ashraf MW, Bilal M, Saeed M (2006) Development and validation of an HPLC method for the determination of dexamethasone, dexamethasone sodium phosphate and chloramphenicol in presence of each other in pharmaceutical preparations. Chromatographia 64:219–222

    Article  CAS  Google Scholar 

  15. Liao CY, Chang CC, Ay C, Zen JM (2007) Flow injection analysis of chloramphenicol by using a disposable wall-jet ring disk carbon electrode. Electroanalysis 19:65–70

    Article  CAS  Google Scholar 

  16. Mamani MCV, Amaya-Farfan J, Reyes FGR, Fracassi da Silva JA, Rath S (2008) Use of experimental design and effective mobility calculations to develop a method for the determination of antimicrobials by capillary electrophoresis. Talanta 76:1006–1014

    Article  CAS  Google Scholar 

  17. Gómez-Taylor B, Palomeque M, García Mateo JV, Martínez Calatayud J (2006) Photoinduced chemiluminescence of pharmaceuticals. J Pharm Biomed Anal 41:347–357

    Article  Google Scholar 

  18. Labuda J (1992) Chemically modified electrodes as sensors in analytical chemistry. Sel Electrode Rev 14:33–86

    CAS  Google Scholar 

  19. Savig J (1980) Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces. J Am Chem Soc 102:92–98

    Article  Google Scholar 

  20. Major RC, Zhu XY (2001) Two-step approach to the formation of organic monolayers on the silicon oxide surface. Langmuir 17:5576–5580

    Article  CAS  Google Scholar 

  21. Yu HZ, Xia N, Zhang J, Liu ZF (1998) Constructing different ‘bridges’ for interfacial electron transfer in azobenzene LB/SAM composite bilayers. J Electroanal Chem 448:119–124

    Article  CAS  Google Scholar 

  22. Hobara D, Sasaki T, Imabayashi S, Kakuichi T (1999) Surface structure of binary self-assembled monolayers formed by electrochemical selective replacement of adsorbed thiols. Langmuir 15:5073–5078

    Article  CAS  Google Scholar 

  23. Hobara D, Ota M, Imabayashi S, Niki K, Kakiuchi T (1998) Phase separations of binary self-assembled thiol monolayercomposed of 1-hexadecanethiol and 3-mercaptopropionic acid on Au(111) studied by scanning tunneling microscopy and cyclic voltammetry. J Electroanal Chem 444:113–119

    Article  CAS  Google Scholar 

  24. Finot MO, McDermott MT (2000) Characterization of n-alkanethiolate monolayers adsorbed to electrochemically deposited gold nanocrystals on glassy carbon electrodes. J Electroanal Chem 488:125–132

    Article  CAS  Google Scholar 

  25. Cohen-Atiya M, Mandler D (2003) Studying thiol adsorption on Au, Ag and Hg surfaces by potenciometric measurements. J Electroanal Chem 550–551:267–276

    Article  Google Scholar 

  26. Ulman A (1996) Formation and Structure of self-assembled monolayers. Chem Rev 96:1533–1554

    Article  CAS  Google Scholar 

  27. Wang YN, Hush S, Reimers JR (2007) Formation of gold—methanethiyl self-assembled monolayers. J Am Chem Soc 129:14532–14533

    Article  CAS  Google Scholar 

  28. Ge Y, Whitten JE (2008) Interfacial electronic properties of thiophene and sexithiophene adsorbed on a fluorinated alkanethiol monolayer. J Phys Chem C 112:1174–1182

    Article  CAS  Google Scholar 

  29. Biener MM, Biener J, Friend CM (2005) Revisiting the S-Au(111) interaction: static or dinamic? Langmuir 21:1668–1671

    Article  CAS  Google Scholar 

  30. Jiang YG, Wang ZQ, Yu X, Shi F, Xu HP, Zhang X (2005) Self-assembled monolayers of dendron thiols for electrodeposition of gold nanostructures: toward fabrication of superhydrophobic/superhydrophilic surfaces and pH-responsive surfaces. Langmuir 21:1986–1990

    Article  CAS  Google Scholar 

  31. Mirsky VM (2002) New Electroanalytical applications of self-assembled monolayers. TrAC, Trends Anal Chem 21:439–450

    Article  CAS  Google Scholar 

  32. Pedrosa VA, Caetano J, Machado SAS, Bertotti M (2008) Determination of parathion and carbaryl pesticides in water and food samples using a self assembled monolayer/acetylcolinesterase electrochemical biosensor. Sensors 8:4600–4610

    Article  CAS  Google Scholar 

  33. Bozic RG, West AC, Levicky R (2008) Square wave voltammetric detection of 2, 4, 6-trinitrotoluene and 2, 4-dinitrotoluene on a gold electrode modified with self-assembled monolayers. Sens Actuators B 133:509–515

    Article  Google Scholar 

  34. Zhu L, Zhao R, Wang K, Xiang H, Shang Z, Sun W (2008) Electrochemical behaviors of methylene blue on DNA modified electrode and its application on the detection of PCR product from NOS sequence. Sensors 8:5649–5660

    Article  CAS  Google Scholar 

  35. Degefa TH, Kwak J (2008) Electrochemical impedance sensing of DNA at PNA self assembled monolayer. J Electroanal Chem 612:37–41

    Article  CAS  Google Scholar 

  36. Tsai WC, Pai PJR (2009) Surface plasmon resonance-based immunosensor with oriented immobilized antibody fragments on a mixed self-assembled monolayer for the determination of staphylococcal enterotoxin B. Microchim Acta 166:115–122

    Article  CAS  Google Scholar 

  37. Maalouf R, Hassen WM, Fournier-Wirth C, Jaffrezic-Renault N (2008) Comparison of two innovatives approaches for bacterial detection: paramagnetic nanoparticles and self-assembled multilayer processes. Microchim Acta 163:157–161

    Article  CAS  Google Scholar 

  38. Jun Yue Bai JY, Wang L, Wang HJ, Huang PF (2007) Electrochemical behavior and determination of epinephrine at a mercaptoacetic acid self-assembled gold electrode. Microchim Acta 156:321–326

    Article  Google Scholar 

  39. Wang C, Wang G, Fang B (2009) Electrocatalytic oxidation of bilirubinat ferrocenecarboxamide modified MWCNT—gold nanocomposite electrodes. Microchim Acta 164:113–118

    Article  CAS  Google Scholar 

  40. Park IS, Kim DK, Adanyi N, Varadi M, Kim N (2004) Development od a direct-binding chloramphenicol sensor based on thiol or sulfide mediated self-assembled antibody monolayers. Biosens Bioelectron 19:667–674

    Article  CAS  Google Scholar 

  41. Yuan J, Oliver R, Aguilar MI, Wu Y (2008) Surface plasmon resonance assay for chloramphenicol. Anal Chem 80:8329–8333

    Article  CAS  Google Scholar 

  42. Zhang X, Wang S, Shen Q (2005) The electrochemical behavior of p-aminophenol at a ω-mercaptopropionic acid self-assembled gold electrode. Microchim Acta 149:37–42

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from FAPESP and thank Professor C.H. Collins for language assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Rath.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 47 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Codognoto, L., Winter, E., Doretto, K.M. et al. Electroanalytical performance of self-assembled monolayer gold electrode for chloramphenicol determination. Microchim Acta 169, 345–351 (2010). https://doi.org/10.1007/s00604-010-0339-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-010-0339-8

Keywords

Navigation