Skip to main content

Advertisement

Log in

Optimization of acetylcholinesterase immobilization on microelectrodes based on nitrophenyl diazonium for sensitive organophosphate insecticides detection

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The immobilization of acetylcholinesterase on platinum microelectrodes modified with p-nitrobenzenediazonium is optimized. In the first step, a layer of p-nitrophenyl groups was deposited on the surface and then reduced to p-aminophenyl groups. Finally, the enzyme was linked to the amino groups on the surface using glutaraldehyde. Each step of the electrode modification was characterized by cyclic voltammetry and electrochemical impedance spectroscopy (EIS) at acidic and neutral pH to modify the electric charges of different bound moieties. The deposition of diazonium groups was attempted by potentiometry, amperometry or CV, but only potentiometry proceeded without passivation of the surface. The use of microelectrodes improved the limit of detection of ethylparaoxon measurements to 20 nM (compared to 100 nM in case of screen-printed electrodes based on the same method of immobilization). The method allowed the production of stable and reproducible amperometric microbiosensors and may be adapted to other enzymes and electrode materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Dale N, Hatz S, Tian F, Llaudet E (2005) Listening to the brain: microelectrode biosensors for neurochemicals. Trends Biotehnol 23(8):420–428

    Article  CAS  Google Scholar 

  2. Anderson BB, Ewing AG (1999) Chemical profiles and monitoring dynamics at an individual nerve cell in Planorbis corneus with electrochemical detection. J Pharmaceut Biomed Anal 19:15–32

    Article  CAS  Google Scholar 

  3. Krinke D, Jahnke HG, Pänke O, Robitzki AA (2009) A microelectrode-based sensor for label-free in vitro detection of ischemic effects on cardiomyocytes. Biosens Bioelectron 24:2798–2803

    Article  CAS  Google Scholar 

  4. Wang Y, Chen ZZ, Li QL (2010) Microfluidic techniques for dynamic single-cell analysis. Microchim Acta. doi:10.1007/s00604-010-0296-2, In press

    Google Scholar 

  5. Matysik FM (2008) Advances in amperometric and conductometric detection in capillary and chip-based electrophoresis. Microchim Acta 160:1–14

    Article  CAS  Google Scholar 

  6. Wang J (2000) Microelectrodes. In: Wang J (ed) Analytical Electrochemistry, 2nd edn. Wiley-VCH, New York, pp 128–134

    Google Scholar 

  7. Brown RJC, Brett DJL (2009) Microelectrode voltammetry as a high accuracy method for determination of diffusion coefficients. Microchim Acta 164:337–344

    Article  CAS  Google Scholar 

  8. Mehrvar M, Abdi M (2004) Recent developments, characteristics, and potential applications of electrochemical biosensors. Anal Sci 20:1113–1126

    Article  CAS  Google Scholar 

  9. Mitala JJ Jr, Michael AC (2006) Improving the performance of electrochemical microsensors based on enzymes entrapped in a redox hydrogel. Anal Chim Acta 556:326–332

    Article  CAS  Google Scholar 

  10. Rijiravanich P, Aoki K, Chen J, Surareungchai W, Somasundrum M (2006) Micro-cylinder biosensors for phenol and catechol based on layer-by-layer immobilization of tyrosinase on latex particles: theory and experiment. J Electroanal Chem 589:249–258

    Article  CAS  Google Scholar 

  11. Hamdi N, Wang J, Walker E, Maidment NT, Monbouquette HG (2006) An electroenzymatic L-glutamate microbiosensor selective against dopamine. J Electroanal Chem 591:33–40

    Article  CAS  Google Scholar 

  12. Schuvailo OM, Soldatkin OO, Lefebvre A, Cespuglio R, Soldatkin AP (2006) Highly selective microbiosensors for in vivo measurement of glucose, lactate and glutamate. Anal Chim Acta 573–574:110–116

    Article  Google Scholar 

  13. Yang M, Yang Y, Yang Y, Shen G, Yu R (2005) Microbiosensor for acetylcholine and choline based on electropolymerization/sol–gel derived composite membrane. Anal Chim Acta 530:205–211

    Article  CAS  Google Scholar 

  14. Pinson J, Podvorica F (2005) Attachment of organic layers to conductive or semiconductive surfaces by reduction of diazonium salts. Chem Soc Rev 34:429–439

    Article  CAS  Google Scholar 

  15. Marquette CA, Bouteille F, Corgier BP, Degiuli A, Blum LJ (2009) Disposable screen-printed chemiluminescent biochips for the simultaneous determination of four point-of-care relevant proteins. Anal Bioanal Chem 393(4):1191–1198

    Article  CAS  Google Scholar 

  16. Corgier BP, Marquette CA, Blum LJ (2007) Diazonium–protein adducts for graphite electrode microarrays modification: direct and addressed electrochemical immobilization. J Am Chem Soc 127(51):18328–18332

    Article  Google Scholar 

  17. Corgier BP, Laurent A, Perriat P, Blum LJ, Marquette CA (2007) A versatile method for direct and covalent immobilization of DNA and proteins on biochips. Angew Chem Int Ed 46:4108–4110

    Article  CAS  Google Scholar 

  18. Radi AE, Muñoz-Berbel X, Cortina-Puig M, Marty JL (2009) Novel protocol for covalent immobilization of horseradish peroxidase on gold electrode surface. Electroanal 21(6):696–700

    Article  CAS  Google Scholar 

  19. Radi AE, Montorne JM, O’Sullivan CK (2006) Reagentless detection of alkaline phosphatase using electrochemically grafted films of aromatic diazonium salts. J Electroanal Chem 587:140–147

    Article  CAS  Google Scholar 

  20. Nassef HM, Radi AE, O’Sullivan CK (2006) Electrocatalytic oxidation of hydrazine at o-aminophenol grafted modified glassy carbon electrode: reusable hydrazine amperometric sensor. J Electroanal Chem 592:139–146

    Article  CAS  Google Scholar 

  21. Nassef HM, Radi AE, O’Sullivan CK (2006) Electrocatalytic sensing of NADH on a glassy carbon electrode modified with electrografted o-aminophenol film. Electrochem Commun 8:1719–1725

    Article  CAS  Google Scholar 

  22. Roe A (1949) Preparation of aromatic fluorine compounds from diazonium fluoborates: the Schiemann reaction. In: Adams R (ed) Organic reactions, vol 5. Willey, New York, pp 193–228

    Google Scholar 

  23. Janin M, Ghilane J, Randriamahazaka H, Lacroix JC (2009) Microelectrodes modification through the reduction of aryl diazonium and their use in scanning electrochemical microscopy (SECM). Electrochem Commun 11:647–650

    Article  CAS  Google Scholar 

  24. Hermans A, Seipel AT, Miller CE, Wightman RM (2006) Carbon-fiber microelectrodes modified with 4-sulfobenzene have increased sensitivity and selectivity for catecholamines. Langmuir 22(5):1964–1969

    Article  CAS  Google Scholar 

  25. Kariuki JK, McDermott MT (2001) Formation of multilayers on glassy carbon electrodes via the reduction of diazonium salts. Langmuir 17(19):5947–5951

    Article  CAS  Google Scholar 

  26. Kaplan LJ, Foster JF (1971) Isoelectric focusing behavior of bovine plasma albumin, mercaptalbumin, and β-lactoglobulins A and B. Biochemistry-US 10(4):630–636

    Article  CAS  Google Scholar 

  27. Sheffer M, Vivier V, Mandler D (2007) Self-assembled monolayers on Au microelectrodes. Electrochem Commun 9:2827–2832

    Article  CAS  Google Scholar 

  28. Ates M, Sarac AS (2009) Electrochemical impedance spectroscopy of poly[carbazole-co-N-p-tolylsulfonyl pyrrole] on carbon fiber microelectrodes, equivalent circuits for modeling. Prog Org Coat 65:281–287

    Article  CAS  Google Scholar 

  29. Raistrick DI, Franceschetti DR, Macdonald JR (2005) Physical and electrochemical models. In: Barsoukov E, Macdonald JR (eds) Impedance spectroscopy theory, experiment, and applications, 2nd edn. Wiley, New York, pp 80–128

    Google Scholar 

  30. Sarac AS, Sezgin S, Ates M, Turhan CM (2008) Electrochemical impedance spectroscopy and morphological analyses of pyrrole, phenylpyrrole and methoxyphenylpyrrole on carbon fiber microelectrodes. Surf Coat Tech 202:3997–4005

    Article  CAS  Google Scholar 

  31. Andreescu S, Noguer T, Magearu V, Marty JL (2002) Screen-printed electrode based on AChE for the detection of pesticides in presence of organic solvents. Talanta 57:169–176

    Article  CAS  Google Scholar 

  32. Zhang S, Zhao H, John R (2001) A theoretical model for immobilized enzyme inhibition biosensors. Electroanalysis 13:1528–1534

    Article  CAS  Google Scholar 

  33. Valdés-Ramírez G, Fournier D, Ramírez-Silva MT, Marty JL (2008) Sensitive amperometric biosensor for dichlorovos quantification: application to detection of residues on apple skin. Talanta 74:741–746

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Romanian Ministry of Education and Research through Grants MICROSEN 11049/2007 and SAFEFOOD 61-030/2007. Ovidiu Ilie Covaci is a Ph. D. student with an AMPOSDRU scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdan Bucur.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 2.82 mb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Covaci, O.I., Bucur, B., Bucur, M.P. et al. Optimization of acetylcholinesterase immobilization on microelectrodes based on nitrophenyl diazonium for sensitive organophosphate insecticides detection. Microchim Acta 169, 335–343 (2010). https://doi.org/10.1007/s00604-010-0336-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-010-0336-y

Keywords