Skip to main content
Log in

Fourier transform infrared spectroscopic determination of ammonium at sub-microgram level in waters and biological fluids following removal of nitrate from sample matrix by zerovalent iron nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Experimental parameters were optimized for rapid and precise determination of ammonium ion by FTIR spectroscopy in presence of nitrate ion in water and in samples collected from humans. Nitrates, whose FTIR spectra strongly overlap with those of ammonium ion, were removed from the sample matrix by treating it with zero-valent iron nanoparticles in acidic medium. The infrared peak at 1,400 cm−1 was selected for determination of ammonium ion. Diffuse reflectance FTIR gives both qualitative and quantitative information on ammonium in a KBr matrix. The limit of detection and the limit of quantification of the method are 0.15 ng per 20 µL−1, and 0.5 ng per 20 µL−1, respectively. The relative standard deviation is 6% (n = 8). The results were compared to those of ion chromatography and show a high degree of acceptability. The method can be applied over a wide concentration range using small sample volumes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Legua CM, Lloret SM, Martinez YM, Falco PC (2006) A guide for selecting the most appropriate method for ammonium determination in water analysis. Trace-Trend Anal Chem 25:282–290

    Article  Google Scholar 

  2. Lau KT, Edwards S, Diamond D (2004) Solid-state ammonia sensor based on Berthelot’s reaction. Sens Actuators B 98:12–17

    Article  Google Scholar 

  3. Gibb SW (2000) Ammonia. In: Nollet LML (ed) Handbook of water analysis. Marcel Dekker, New York, pp 223–259

    Google Scholar 

  4. Huizenga JR, Tangerman A, Gips CH (1994) Determination of ammonia in biological fluids. Ann Clin Biochem 31:529–543

    CAS  Google Scholar 

  5. Barsotti RJ (2001) Measurement of ammonia in blood. J Pediatr 138:11–20

    Article  Google Scholar 

  6. Timmer B, Olthuis W, Van den BA (2005) Ammonia sensors and their applications-a review. Sens Actuators B 107:666–677

    Article  Google Scholar 

  7. Shah SB, Westerman PW, Arongo J (2006) Measuring ammonia concentrations and emissions from agricultural land and liquid surfaces: a review. J Air Waste Manage Assoc 56:945–960

    CAS  Google Scholar 

  8. Pai SC, Tsau YJ, Yang TI (2001) pH and buffering capacity problems involved in the determination of ammonia in saline water using the indophenol blue spectrophotometric method. Anal Chim Acta 434:209–216

    Article  CAS  Google Scholar 

  9. Hansen HP, Koroleff F (1999) Determination of nutrients. In: Grasshoff K, Kremling K, Ehrhardt M (eds) Methods of seawater analysis, 3rd edn. Wiley-VCH, Weinheim, pp 159–228, ISBN: 3-527-29589-5

    Google Scholar 

  10. Wells DM, Miller AJ (2000) Intracellular measurement of ammonium in Chara corallina using ion-selective microelectrodes. Plant Soil 221:103–106

    Article  CAS  Google Scholar 

  11. Jarvis M, Jackson A, Tyler P, Hulteen JC (2001) Ammonium extraction method for ion chromatographic measurements of disc drive components. J Chromatogr A 290:271–274

    Article  Google Scholar 

  12. Dolgonosov AM, Krachak AN (1993) Highly selective ion chromatographic determination ammonium ions in waters with à suppressor as postcolumn reactor. J Chromatogr 640:351–353

    Article  CAS  Google Scholar 

  13. Aminot A, Kirkwood DS, Kerouel R (1997) Determination of ammonia in seawater by the indophenol-blue method: evaluation of the ICES NUTS1/C5 questionnaire. Mar Chem 56:59–75

    Article  CAS  Google Scholar 

  14. Parham H, Mobarakzadeh M (2003) Solvent extraction-spectrophotometric determination of trace amounts of total ammonia-ammonium ion content in sewage, soil and shrimp by dicyclohexyl-18-crown-6 and orange II. J Anal Chem 58:514–518

    Article  CAS  Google Scholar 

  15. Kerouel R, Aminot A (1997) Fluorometric determination of ammonia in sea and estuarine waters by direct segmented flow analysis. Mar Chem 57:265–275

    Article  CAS  Google Scholar 

  16. Watson RJ, Butler ECV, Clementson LA, Berry KM (2005) Flow-injection analysis with fluorescence detection for the determination of trace levels of ammonium in seawater. J Environ Monit 7:37–42

    Article  CAS  Google Scholar 

  17. Min JE, Kim M, Pardue JH, Park JW (2008) Reduction of trichloroethylene and nitrate by zero-valent iron with peat. J Environ Sci Hlth A 43:144–153

    Article  CAS  Google Scholar 

  18. Krajangpan S, Bermudez JJE, Bezbaruah AN, Chisholm BJ, Khan E (2008) Nitrate removal by entrapped zero-valent iron nanoparticles in calcium alginate. Water Sci Technol 58:2215–2222

    Article  CAS  Google Scholar 

  19. Lin K, Chang N, Chuang T (2008) Decontamination of nitrates and nitrites in wastewater by zero-valent iron nanoparticles. Nano 3:291–295

    Article  CAS  Google Scholar 

  20. Lin K, Chang N, Chuang T (2008) Fine structure characterization of zero-valent iron nanoparticles for decontamination of nitrites and nitrates in wastewater and groundwater. Sci Technol Adv Mater 9:025015, 9pp

    Article  Google Scholar 

  21. He F, Zhao D (2007) Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environ Sci Technol 41:6216–6221

    Article  CAS  Google Scholar 

  22. He F, Zhao D (2005) Preparation and characterization of a new class of starch- stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environ Sci Technol 39:3314–3320

    Article  CAS  Google Scholar 

  23. Sun Y, Li X, Cao J, Zhang W, Wang HP (2006) Characterization of zero-valent iron nanoparticles. Adv Colloid Interface Sci 120:47–56

    Article  CAS  Google Scholar 

  24. Xiong Z, Zhao D, Pan G (2007) Rapid and complete destruction of perchlorate in water and ion-exchange brine using stabilized zero-valen iron nanoparticles. Water Res 41:3497–3505

    Article  CAS  Google Scholar 

  25. Verma D, Verma SK, Deb MK (2009) Single drop micro extraction and diffuse reflectance Fourier transform infrared spectroscopic determination of chromium in biological fluid. Talanta 78:270–277

    Article  CAS  Google Scholar 

  26. Verma SK, Deb MK (2007) A single drop and nanogram level determination of sulfite (SO 2−3 ) in alcoholic and non-alcoholic beverage samples based on diffused reflectance Fourier transform infrared spectroscopic (DRS-FTIR) analysis on KBr matrix. J Agric Food Chem 55:8319–8324

    Article  CAS  Google Scholar 

  27. Verma SK, Deb MK (2007) Direct and rapid determination of sulphate in environmental samples with diffuse reflectance Fourier transform infrared spectroscopy using KBr substrate. Talanta 71:1546–1552

    Article  CAS  Google Scholar 

  28. Verma SK, Deb MK, Verma D (2008) A simple diffuse reflectance Fourier transform infrared spectroscopic determination of nitrogen dioxide (NO2) in ambient air. Atmos Res 90:33–40

    Article  CAS  Google Scholar 

  29. Verma SK, Deb MK (2007) Nondestructive and rapid determination of nitrate in soil, dry deposits and aerosol samples using KBr matrix with diffuse reflectance Fourier transform infrared spectroscopy (DRIFTS). Anal Chim Acta 582:382–389

    Article  CAS  Google Scholar 

  30. Verma SK, Deb MK, Bajpai S, Suzuki Y, Sinha SK, Gong Y (2007) A simple diffuse reflectance Fourier transform infrared spectroscopic determination of sulphur dioxide (SO2) in ambient air using potassium tetrachloromercurate as absorbing reagent. J AOAC 90:1180–1191

    CAS  Google Scholar 

  31. Nyquist RA, Kagel RO (1971) Infrared spectra of inorganic compounds. Academic, New York

    Google Scholar 

  32. Gadsden JA (1975) Infrared spectra of minerals and related inorganic compounds. Butterworth, Chichester

    Google Scholar 

  33. Kielemoes J, De Boever P, Verstraete W (2000) Influence of denitrification on the corrosion of iron and stainless steel powder. Environ Sci Technol 34:663–671

    Article  CAS  Google Scholar 

  34. Thomsen V, Schatzlein D, Mercuro D (2003) Limits of detection in spectroscopy. Spectroscopy 18:112–114

    CAS  Google Scholar 

  35. Christian GD (2001) Analytical chemistry, 5th edn. Wiley, New York

    Google Scholar 

  36. Colthup NB (2002) American Cyanamid company, infrared spectroscopy; encyclopedia of physical science and technology, analytical chemistry, 3rd edn. Academic, London

    Google Scholar 

  37. Amornthammarong N, Jakmunee J, Li J, Dasgupta PK (2006) Hybrid fluorometric flow analyzer for ammonia. Anal Chem 78:1890–1896

    Article  CAS  Google Scholar 

  38. Tsuboi T, Hirano Y, Shibata Y, Motomizu S (2002) Sensitivity improvement of ammonia determination based on flow-injection indophenol spectrometry with manganese(II) ion as the catalyst and analysis of exhaust gas of thermal power plant. Anal Sci 18:1141–1144

    Article  CAS  Google Scholar 

  39. Pranaityte B, Jermak S, Naujalis E, Padarauskas A (2007) Capillary electrophoretic determination of ammonia using headspace single-drop microextraction. Microchem J 86:48–52

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Head, School of Studies in Chemistry, & Prof. S.K. Saraf, Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, C.G., India for providing laboratory facilities. The authors are also thankful to Prof. N.L. Phuljhele, Pt. Jawaharlal Nehru Memorial Medical College, Raipur for providing the human biological fluid samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manas Kanti Deb.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table

Analysis of ammonium by DRS-FTIR technique in human biological fluid and environmental water samples (DOC 72 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deb, M.K., Verma, D. Fourier transform infrared spectroscopic determination of ammonium at sub-microgram level in waters and biological fluids following removal of nitrate from sample matrix by zerovalent iron nanoparticles. Microchim Acta 169, 23–31 (2010). https://doi.org/10.1007/s00604-010-0308-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-010-0308-2

Keywords

Navigation