Skip to main content
Log in

A novel hydrazine electrochemical sensor based on the high specific surface area graphene

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An ultrasensitive platform is presented for the determination of hydrazine by combining the high specific surface area and higher electrical conductivity of poly(sodium styrenesulfonate) (PSS) graphene nanocomposite film with amperometric detection. The PSS-graphene were synthesized by the Hummers method and used to modify a glassy carbon electrode. The material was characterized by scanning electron microscopy and is found to be suitable for sensing hydrazine. The overpotential of hydrazine on the modified electrode is 0.31 V which is lower than in many electrochemical sensors. The calibration curve for hydrazine is linear in the range from 3.0 to 300 µmol L−1, and the detection limit is as low as 1 µmol L−1. This is the first report in which such a high sensitivity and low limit of detection has been achieved. It is concluded that PSS graphene represents an efficient electron mediator for sensing hydrazine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ahmad U, Rahman MM, Hahn YB (2009) Ultra-sensitive hydrazine chemical sensor based on high-aspect-ratio ZnO Nanowires. Talanta 77:1376

    Article  Google Scholar 

  2. Umar A, Rahman MM, Kim SH, Hahn YB (2008) Chain-like assembly of gold nanoparticles on artificial DNA templates via ‘click chemistry. Chem Commun 2:166

    Article  Google Scholar 

  3. Vernot EH, Macewen JD, Bruner RH, Haus CC, Kinkead ER (1985) Fund Appl Toxicol 5:1050

    Article  CAS  Google Scholar 

  4. Mo JW, Ogorevc B, Zhang X, Pihlar B (2000) Cobalt and copper hexacyanoferrate modified carbon fiber microelectrode as an all-solid potentiometric microsensor for hydrazine. Electroanalysis 12:48

    Article  CAS  Google Scholar 

  5. Amlathe S, Gupta VK (1988) Spectrophotometric determination of trace amounts of hydrazine in polluted water. Analyst 113:1481

    Article  CAS  Google Scholar 

  6. Ensafi AL, Rezaei B (1998) Flow injection determination of hydrazine with fluorimetric detection. Talanta 47:645

    Article  CAS  Google Scholar 

  7. Safavi A, Ensa AA (1995) Kinetic spectrophotometric determination of hydrazine. Anal Chim Acta 300:307

    Article  CAS  Google Scholar 

  8. Mo JW, Ogorevc B, Zhang X, Pihlar B (2000) Cobalt and copper hexacyanoferrate modified carbon fiber microelectrode as an all-Solid potentiometric microsensor for hydrazine. Electroanalysis 12:48

    Article  CAS  Google Scholar 

  9. Ravichandran K, Baldwin RP (1983) Liquid chromatographic determination of hydrazines with electrochemically pretreated glassy carbon electrodes. Anal Chem 55:1782

    Article  CAS  Google Scholar 

  10. Ojani R, Raoof JB, Norouzi B (2008) Acetylferrocene modified carbon paste electrode; a sensor for electrocatalytic determination of hydrazine. Electroanalysis 20(12):1378

    Article  CAS  Google Scholar 

  11. Wang GF, Gu AX, Wang W, Wei Y, Wu JJ, Wang GZ, Zhang XJ, Fang B (2009) Copper oxide nanoarray based on the substrate of Cu applied for the chemical sensor of hydrazine detection. Electrochem Commun 11:631

    Article  CAS  Google Scholar 

  12. Fang B, Shen RX, Zhang W, Wang GF, Zhang CH (2009) Electrocatalytic oxidation of hydrazine at a chromium hexacyanoferrate/single-walled carbon nanotube modified glassy carbon electrode. Microchim Acta 165:231

    Article  CAS  Google Scholar 

  13. Yang M, Chen YT, Ma J, Huai LF (2009) Differential pulse voltammetric determination of trace rotenone using molecularly imprinted polymer microspheres. Microchim Acta 166:95

    Article  CAS  Google Scholar 

  14. Yang M, Li HL (2002) Differential pulse voltammetric determination of traces of hydrazine using magnetic microspheres. Microchim Acta 138:65

    Article  CAS  Google Scholar 

  15. Li J, Lin XQ (2007) Electrocatalytic oxidation of hydrazine and hydroxylamine at gold nanoparticle-polypyrrole nanowire modified glassy carbon electrode. Sens Actuators B 126:527

    Article  Google Scholar 

  16. Christopher BM, Banks CE, Simm AO, Timothy GJ, Richard GC (2006) The electroanalytical detection of hydrazine: a comparison of the use of palladium nanoparticles supported on boron-doped diamond and palladium plated BDD microdisc array. Analyst 131:106

    Article  Google Scholar 

  17. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183

    Article  CAS  Google Scholar 

  18. Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 3:101

    Article  CAS  Google Scholar 

  19. Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110:132

    Article  CAS  Google Scholar 

  20. Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GH, Evmenenko G, Nguyen ST, Ruoff RS (2007) Preparation and characterization of graphene oxide paper. Nature 448:457

    Article  CAS  Google Scholar 

  21. Stoller MD, Park SJ, Zhu YW, An J, Ruoff RS (2008) Graphene-based ultracapacitors. Nano Lett 8:3498

    Article  CAS  Google Scholar 

  22. Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282

    Article  CAS  Google Scholar 

  23. Xu YX, Bai H, Lu GW, Li C, Shi GQ (2008) Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J Am Chem Soc 130:5856

    Article  CAS  Google Scholar 

  24. Muszynski R, Seger B, Kamat PV (2008) Decorating graphene sheets with gold nanoparticles. J Phys Chem C 112:5263

    Article  CAS  Google Scholar 

  25. Williarris G, Seger B, Kamat PV (2008) TiO2-graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2:1487

    Article  Google Scholar 

  26. Cassagneau T, Fendler JH (1998) High density rechargeable lithium-ion batteries self-assembled from graphite oxide nanoplatelets and polyelectrolytes. Adv Mater 10(11):877

    Article  CAS  Google Scholar 

  27. Gilje S, Han S, Wang M, Wang KL, Kaner RB (2007) A chemical route to graphene for device applications. Nano Lett 7:3394

    Article  CAS  Google Scholar 

  28. Schedin F, Geim AK, Morozov SV, Hill EW, Blake P, Katsnelson MI, Novoselov KS (2007) Detection of individual gas molecules adsorbed on graphene. Nat Mater 6:652

    Article  CAS  Google Scholar 

  29. Bunch JS, van der Zande AM, Verbridge SS, Frank IW, Tanenbaum DM, Parpia JM, Craighead HG, McEuen PL (2007) Electromechanical resonators from graphene sheets. Science 315:490

    Article  CAS  Google Scholar 

  30. Lu J, Drzal LT, Worden RM, Lee I (2007) Simple fabrication of a highly sensitive glucose biosensor using enzymes immobilized in exfoliated graphite nanoplatelets nafion membrane. Chem Mater 19:6240

    Article  CAS  Google Scholar 

  31. Lu J, Do I, Drzal LT, Worden RM, Lee I (2008) Nanometal-decoratedexfoliated graphite nanoplatelet based glucose biosensors with high sensitivity and fast response. ACS Nano 2:1825

    Article  CAS  Google Scholar 

  32. Li J, Guo SJ, Zhai YM, Wang EK (2009) Nafion–graphene nanocomposite film as enhanced sensing platform for ultrasensitive determination of cadmium. Electrochem Commun 11:1085

    Article  CAS  Google Scholar 

  33. Wang Y, Li YM, Tang LH, Lu J, Li JH (2009) Application of graphene-modified electrode for selective detection of dopamine. Electrochem Commun 11:889

    Article  CAS  Google Scholar 

  34. Shan CS, Yang HF, Song JF, Han DX, Ivaska A, Niu L (2009) Direct Electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal Chem 81:2378

    Article  CAS  Google Scholar 

  35. Wu H, Wang J, Kang XH, Wang CM, Wang DH, Liu J, Aksay IA, Lin YH (2009) Glucose biosensor based on immobilization of glucose oxidase in platinum nanoparticles/graphene/chitosan nanocomposite film. Talanta online

  36. Fu CL, Yang WS, Chen X, Evans DG (2009) Direct electrochemistry of glucose oxidase on a graphite nanosheet–Nafion composite film modified electrode. Electrochem Commun 11:997

    Article  CAS  Google Scholar 

  37. Hummers W, Offeman R (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  38. Liu Y, Zou XQ, Dong SJ (2006) Electrochemical characteristics of facile prepared carbon nanotubes-ionic liquid gel modified microelectrode and application in bioelectrochemistry. Electrochem Commun 8:1429

    Article  CAS  Google Scholar 

  39. Pei RJ, Cheng ZL, Wang EK, Yang XR (2001) Amplification of antigen–antibody interactions based on biotin labeled protein–streptavidin network complex using impedance spectroscopy. Biosens Bioelectron 16:355

    Article  CAS  Google Scholar 

  40. Ji X, Banks CE, Holloway AF, Jurkschat K, Thorogood CA, Wildgoose GG, Compton RG (2006) Palladium sub-nanoparticle decorated-bamboo multi-walled carbon nanotubes exhibit electrochemical metastability:voltammetric sensing in otherwise inaccessible pH ranges. Electroanalysis 18:2481

    Article  CAS  Google Scholar 

  41. Perez EF, Neto GO, Tanaka AA, Kubota LT (1998) Electrochemical sensor for hydrazine based on silica modified with nickel tetrasulfonated phthalocyanine. Electroanalysis 10:112

    Article  Google Scholar 

  42. McAuley CB, Banks CE, Simm AO, Timothy GJJ, Richard GC (2006) The electroanalytical detection of hydrazine: a comparison of the use of palladium nanoparticles supported on boron-doped diamond and palladium plated BDD microdisc array. Analyst 131:106

    Article  Google Scholar 

  43. Abdollah S, Miranzadeh L, Rahman H (2008) Amperometric and voltammetric detection of hydrazine using glassy carbon electrodes modified with carbon nanotubes and catechol derivatives. Talanta 75:147

    Google Scholar 

  44. Richard Prabakar SJ, Sriman Narayanan S (2008) Amperometric determination of hydrazine using a surface modified nickel hexacyanoferrate graphite electrode fabricated following a new approach. J Electroanal Chem 617:111

    Article  Google Scholar 

Download references

Acknowledgements

We appreciated the support of the National Science Foundation of China (No. 20871089), the Natural Science Research Project of Education Department of Anhui Province (No. KJ2008B182, KJ2008A06ZC) and the Foundation of Anhui Provincial Education Department for Outstanding young talents in University (No. 2009SQRZ172) and the Natural Science Foundation of Anhui Province (090416239).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Zhang, L., Guo, Z. et al. A novel hydrazine electrochemical sensor based on the high specific surface area graphene. Microchim Acta 169, 1–6 (2010). https://doi.org/10.1007/s00604-010-0304-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-010-0304-6

Keywords

Navigation