Skip to main content
Log in

Determination of 3, 4-dihydroxybenzoic acid by electrocatalytic oxidation at an ionic liquid modified electrode

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

An electrode modified with an ionic liquid was used for the electrochemical determination of 3,4-dihydroxybenzoic acid (DHBA). Cyclic voltammetry indicated a pair of well-defined quasi-reversible redox peaks with a formal peak potential located at 586 mV (vs. the SCE). The voltammetric response to DHBA is largely improved compared to a traditional carbon paste electrode. This is attributed to a larger interface (due to the presence of an ionic liquid) with higher conductivity and inherent catalytic capability. The charge transfer coefficient, the standard rate constant and the apparent diffusion coefficient were calculated. The oxidation peak current was linearly related to the concentration of DHBA in the range 0.8–1.5 mM, and the detection limit was 0.62 µM (at 3σ). The effect of potential interferents was investigated, and the method was successfully applied to the determination of DHBA in different samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1

Similar content being viewed by others

References

  1. Babich H, Sedletcaia A, Kenigsberg B (2002) Inhibition of central nervous system aromatase activity: a mechanism for fenarimol-induced infertility in the male rat. Pharmacol Toxicol 91:235

    Article  Google Scholar 

  2. Garcia-Parrilla MC, Camacbo ML, Heredia FJ, Troncoso AM (1994) Separation and identification of phenolic acids in wine vinegars by HPLC. Food Chem 50:313

    Article  CAS  Google Scholar 

  3. Lores M, Carcía CM, Cela R (1994) High-performance liquid chromatography of phenolic aldehydes with highly selective detection by means of postcolumn photochemical derivatization. J Chromatogr A 683:31

    Article  CAS  Google Scholar 

  4. Angerosa F, d'Alessandro N, Konstantinou P, Giacinto LD (1995) GC-MS evaluation of phenolic compounds in virgin olive oil. J Agric Food Chem 43:1802

    Article  CAS  Google Scholar 

  5. Shi R, Schwedt G (1995) HPLC-und DC-Analytik phenolischer Inhaltstoffe im Wein. Deutsch Lebensm Rundsch. Deutsch Lebensm Rundsch 91:14

    CAS  Google Scholar 

  6. Gil MI, Garcia-Viguera C, Bridle P, Thomas-Barberan FA (1995) Analysis of phenolic compounds in Spanish red wines by capillary zone electrophoresis. Z Lebensm Unters Forsch 200:278

    Article  CAS  Google Scholar 

  7. Wang JX, Li MX, Shi ZJ, Li NQ, Gu ZN (2001) Electrocatalytic oxidation of 3, 4-dihydroxyphenylacetic acid at a glassy carbon electrode modified with single-wall carbon nanotubes. Electrochim Acta 47:651

    Article  CAS  Google Scholar 

  8. Moghaddam AB, Kobarfard F, Davarani SSH, Nematollahi D, Shamsipur M, Fakhari AR (2006) Electrochemical study of 3, 4-dihydroxybenzoic acid in the presence of 4-hydroxy-1-methyl-2(1H)-quinolone: Application to electrochemical synthesis of new benzofuran derivative. J Electroanal Chem 586:161

    Article  CAS  Google Scholar 

  9. Golabi SM, Nematollahi D (1997) Electrochemical study of 3, 4-dihydroxybenzoic acid and 4-tert-butylcatechol in the presence of 4-hydroxycoumarin application to the electro-organic synthesis of coumestan derivatives. J Electroanal Chem 430:141

    Article  CAS  Google Scholar 

  10. Zhao JW, Niu L, Dong SJ (1998) Electrochemical behavior of 3, 4-dihydroxybenzoic acid in self assembled monolayer electrode system. Chem J Chinese U 19:1749

    CAS  Google Scholar 

  11. Wang GL, Wang R, Wu XQ, Zhang ZR (2007) Molecular imprinted over-oxidized polypyrrole modified electrode for the detection of 3, 4-dihydrobenzoic acid. Chem Sensors 27:31

    Google Scholar 

  12. Buzzeo MC, Hardace C, Compton RG (2004) Use of room temperature ionic liquids in gas sensor design. Anal Chem 76:4583

    Article  CAS  Google Scholar 

  13. Welton T (1999) Room-temperature ionic liquids: solvents for synthesis and catalysis. Chem Rev 99:2071

    Article  CAS  Google Scholar 

  14. Buzzo MC, Evans RG, Compton RG (2004) Non-haloaluminate room-temperature ionic liquids in electrochemistry—a review. Chem Phys Chem 5:1106

    Google Scholar 

  15. Sun W, Zhai ZQ, Wang DD, Liu SF, Jiao K (2009) Electrochemical behaviours of hemoglobin entrapped in a Nafion/nano-ZnO film on carbon ionic liquid electrode. Bioelectrochemistry 74:295

    Article  CAS  Google Scholar 

  16. Mehnert CP (2004) Supported ionic liquid catalysis. Chem Eur J 11:50

    Article  CAS  Google Scholar 

  17. Park S, Kazlauskas RJ (2003) Biocatalysis in ionic liquids—advantages beyond green technology. Curr Opin Biotechnol 14:432

    Article  CAS  Google Scholar 

  18. Shimojo K, Goto M (2004) Solvent extraction and stripping of silver ions in room-temperature ionic liquids containing calixarenes. Anal Chem 76:5039

    Article  CAS  Google Scholar 

  19. Bindhu LV, Abraham ET (2003) Immobilization of horseradish peroxidase on chitosan for use in nonaqueous media. J Appl Polym Sci 88:1456

    Article  CAS  Google Scholar 

  20. Wei D, Ivaska A (2008) Applications of ionic liquids in electrochemical sensors. Anal Chim Acta 607:126

    Article  CAS  Google Scholar 

  21. Liu Y, Huang LJ, Dong SJ (2007) Electrochemical catalysis and thermal stability characterization of laccase–carbon nanotubes-ionic liquid nanocomposite modified graphite electrode. Biosensors Bioelectron 23:35

    Article  CAS  Google Scholar 

  22. Wang Q, Tang H, Xie QJ, Tan L, Zhang YY, Li BM, Yao SZ (2007) Room-temperature ionic liquids/multi-walled carbon nanotubes/chitosan composite electrode for electrochemical analysis of NADH. Electrochim Acta 52:6630

    Article  CAS  Google Scholar 

  23. Musameh MM, Kachoosangi RT, Xiao L, Russell A, Compton RG (2008) Ionic liquid-carbon composite glucose biosensor. Biosens Bioelectron 24:87

    Article  CAS  Google Scholar 

  24. Lu XB, Hu JQ, Yao X, Wang ZP, Li JH (2006) Composite system based on chitosan and room-temperature ionic liquid: direct electrochemistry and electrocatalysis of hemoglobin. Biomacromolecules 7:975

    Article  CAS  Google Scholar 

  25. Maleki N, Safavi A, Tajabadi F (2006) High-performance carbon composite electrode based on an ionic liquid as a binder. Anal Chem 78:3820

    Article  CAS  Google Scholar 

  26. Safavi A, Maleki N, Moradlou O, Sorouri M (2008) Direct electrochemistry of hemoglobin and its electrocatalytic effect based on its direct immobilization on carbon ionic liquid electrode. Electrochem Commun 10:420

    Article  CAS  Google Scholar 

  27. Sun W, Wang DD, Gao RF, Jiao K (2007) Direct electrochemistry and electrocatalysis of hemoglobin in sodium alginate film on a BMIMPF6 modified carbon paste electrode. Electrochem Commun 9:1159

    Article  CAS  Google Scholar 

  28. Sun W, Gao RF, Jiao K (2007) Electrochemistry and electrocatalysis of hemoglobin in nafion/nano-CaCO3 film on a new ionic liquid BPPF6 modified carbon paste electrode. J Phys Chem B 111:4560

    Article  CAS  Google Scholar 

  29. Sun W, Li XQ, Wang Y, Zhao RJ, Jiao K (2009) Electrochemistry and electrocatalysis of hemoglobin on multi-walled carbon nanotubes modified carbon ionic liquid electrode with hydrophilic EMIMBF4 as modifier. Electrochim Acta 54:4141

    Article  CAS  Google Scholar 

  30. Sun W, Li YZ, Yang MX, Liu SF, Jiao K (2008) Direct electrochemistry of single-stranded DNA on an ionic liquid modified carbon paste electrode. Electrochem Commun 10:298

    Article  CAS  Google Scholar 

  31. Sun W, Li YZ, Gao HW, Jiao K (2009) Direct electrochemistry of double stranded DNA on ionic liquid modified carbon paste electrode. Microchim Acta 165:313

    Article  CAS  Google Scholar 

  32. Musameh MM, Kachoosangi RT, Xiao L, Russell A, Compton RG (2008) Ionic liquid-carbon composite glucose biosensor. Biosens Bioelectron 24:87

    Article  CAS  Google Scholar 

  33. Gao R, Shangguan XD, Qiao GJ, Zheng JB (2008) Direct electrochemistry of hemoglobin and its electrocatalysis based on hyaluronic acid and room temperature ionic liquid. Electroanalysis 20:2537

    Article  CAS  Google Scholar 

  34. Li CM, Zang JF, Zhan DP, Chen W, Sun CQ, Teo AL, Chua YT, Lee VS, Moochhala SM (2006) Electrochemical detection of nitric oxide on a SWCNT/RTIL composite gel microelectrode. Electroanalysis 18:713

    Article  Google Scholar 

  35. Wei W, Jin HH, Zhao GC (2009) A reagentless nitrite biosensor based on direct electron transfer of hemoglobin on a room temperature ionic liquid/carbon nanotube-modified electrode. Microchim Acta 164:167

    Article  CAS  Google Scholar 

  36. Li JW, Zhao FQ, Zeng BZ (2007) Characterization of a graphite powder—ionic liquid paste coated gold electrode, and a method for voltammetric determination of promethazine. Microchim Acta 157:27

    Article  CAS  Google Scholar 

  37. Tao H, Wei WZ, Zeng XD, Liu XY, Zhang XJ, Zhang YM (2009) Electrocatalytic oxidation and determination of estradiol using an electrode modified with carbon nanotubes and an ionic liquid. Microchim Acta. doi:10.1007/s00604-009-0163-1

  38. Sun W, Yang MX, Gao RF, Jiao K (2007) Electrochemical determination of ascorbic acid in room temperature ionic liquid BPPF6 modified carbon paste electrode. Electroanalysis 19:1597

    Article  CAS  Google Scholar 

  39. Musameh M, Wang J (2008) Sensitive and stable amperometric measurements at ionic liquid–carbon paste microelectrodes. Anal Chim Acta 606:45

    Article  CAS  Google Scholar 

  40. Nicholson RS, Shai I (1964) Theory of stationary electrode polarography. Single scan and cyclic methods applied to reversible, irreversible, and kinetic systems. Anal Chem 36:706

    Article  CAS  Google Scholar 

  41. Anson FC (1964) Application of potentiostatic current integration to the study of the adsorption of cobalt(III)-(ethylenedinitrilo(tetraacetate) on mercury electrodes. Anal Chem 36:932

    Article  CAS  Google Scholar 

  42. O’Neill RD (1994) Microvoltammetric techniques and sensors for monitoring neurochemical dynamics in vivo.A review. Analyst 119:767

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the financial support of the National Natural Science Foundation of China (No. 20635020, 20405008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, W., Jiang, Q., Xi, M. et al. Determination of 3, 4-dihydroxybenzoic acid by electrocatalytic oxidation at an ionic liquid modified electrode. Microchim Acta 166, 343–348 (2009). https://doi.org/10.1007/s00604-009-0212-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-009-0212-9

Keywords

Navigation