Skip to main content
Log in

Determination of Cu, Zn, Mn, and Pb by microcolumn packed with multiwalled carbon nanotubes on-line coupled with flame atomic absorption spectrometry

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Modified multiwalled carbon nanotubes (MWCNTs) were used as a packing material for flow injection on-line microcolumn preconcentration of trace amounts of the metal ions of Cu, Zn, Mn and Pb, and subsequent flame atomic absorption spectrometry (FAAS) in one run after desorbing the ions with hydrochloric acid and injecting them into the nebulizer of an FAAS. Parameters such as loading time, flow rate, pH, eluent concentration, and flow rate were optimized. Enrichment factors are 20.3, 14.2, 20.6 and 15.4 respectively, and the sample throughput is 25 h−1. The limits of detection (three times the standard deviation of the blank) are 0.59, 0.62, 0.28 and 1.00 µg L−1, respectively, and standard deviations range from 2.6 to 4.6% (n = 7). The method was applied to the analysis of these ions in vegetables, and accuracy assessed via recovery experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Anthemidis AN (2008) Automatic sequential injection liquid–liquid micro-extraction system for on-line flame atomic absorption spectrometric determination of trace metal in water samples. Talanta 77:541–545

    Article  CAS  Google Scholar 

  2. Silva EL, Roldan PD (2009) Simultaneous flow injection preconcentration of lead and cadmium using cloud point extraction and determination by atomic absorption spectrometry. J Hazard Mater 161:142–147

    Article  CAS  Google Scholar 

  3. Soylak M, Erdogan ND (2006) Copper(II)—rubeanic acid coprecipitation system for separation—preconcentration of trace metal ions in environmental samples for their flame atomic absorption spectrometric determinations. J Hazard Mater 137:1035–1041

    Article  CAS  Google Scholar 

  4. Li Y, Jiang Y, Yan XP (2004) Further study on a flow injection on-line multiplexed sorption preconcentration coupled with flame atomic absorption spectrometry for trace element determination. Talanta 64:758–765

    Article  CAS  Google Scholar 

  5. Stafiej A, Pyrzynska K (2008) Solid phase extraction of metal ions using carbon nanotubes. Microchem J 89:29–33

    Article  CAS  Google Scholar 

  6. Stafiej A, Pyrzynska K (2007) Adsorption of heavy metal ions with carbon nanotubes. Sep Purif Technol 58:49–52

    Article  CAS  Google Scholar 

  7. Tuzen M, Saygi KO, Usta C, Soylak M (2008) Pseudomonas aeruginosa immobilized multiwalled carbon nanotubes as biosorbent for heavy metal ions. Bioresour Technol 99:1563–1570

    Article  CAS  Google Scholar 

  8. Tuzen M, Saygi KO, Soylak M (2008) Solid phase extraction of heavy metal ions in environmental samples on multiwalled carbon nanotubes. J Hazard Mater 152:632–639

    Article  CAS  Google Scholar 

  9. Tuzen M, Soylak M (2007) Multiwalled carbon nanotubes for speciation of chromium in environmental samples. J Hazard Mater 147:219–225

    Article  CAS  Google Scholar 

  10. Liang P, Ding Q, Song F (2005) Application of multiwalled carbon nanotubes as solid phase extraction sorbent for preconcentration of trace copper in water samples. J Sep Sci 28:2339–2343

    Article  CAS  Google Scholar 

  11. Liu BY, Li Y, Yan XP (2008) Preparation, characterization, and application of L-cysteine functionalized multiwalled carbon nanotubes as a selective sorbent for separation and preconcentration of heavy metals. Adv Funct Mater 18:1536–1543

    Article  CAS  Google Scholar 

  12. Amais RS, Ribeiro JS, Segatelli MG, Yoshida IVP, Luccas PO, Tarley CRT (2007) Assessment of nanocomposite alumina supported on multi-wall carbon nanotubes as sorbent for on-line nickel preconcentration in water samples. Sep Purif Technol 58:122–128

    Article  CAS  Google Scholar 

  13. Gil RA, Goyanes SN, Polla G, Smichowski P, Olsina RA, Martinez LD (2007) Application of multi-walled carbon nanotubes as substrate for the on-line preconcentration, speciation and determination of vanadium by ETAAS. J Anal At Spectrom 22:1290–1295

    Article  CAS  Google Scholar 

  14. Li YH, Wang SG, Wei JG, Zhang XF, Xu CL, Luan ZK, Wu DH, Wei BQ (2002) Lead adsorption on carbon nanotubes. Chem Phys Lett 357:263–266

    Article  CAS  Google Scholar 

  15. Liang HD, Han DM (2006) Multi-walled carbon nanotubes as sorbent for flow injection on-line microcolumn preconcentration coupled with flame atomic absorption spectrometry for determination of cadmium and copper. Anal Lett 39:2285–2295

    Article  CAS  Google Scholar 

  16. Tarley CRT, Barbosa AF, Segatelli MG, Figueiredoc EC, Luccas PO (2006) Highly improved sensitivity of TS-FF-AAS for Cd(II) determination at ng L-1 levels using a simple flow injection minicolumn preconcentration system with multiwall carbon nanotubes. J Anal At Spectrom 21:1305–1313

    Article  Google Scholar 

  17. Barbosa AF, Segatelli MG, Pereira AC, Santos AS, Kubota LT, Luccas PO, Tarley CRT (2007) Solid-phase extraction system for Pb (II) ions enrichment based on multiwall carbon nanotubes coupled on-line to flame atomic absorption spectrometry. Talanta 71:1512–1519

    Article  CAS  Google Scholar 

  18. El-Sheikh AH, Sweileh JA, Al-Degs YS (2007) Effect of dimensions of multi-walled carbon nanotubes on its enrichment efficiency of metal ions from environmental waters. Anal Chim Acta 604:119–126

    Article  CAS  Google Scholar 

  19. El-Sheikh AH (2008) Effect of oxidation of activated carbon on its enrichment efficiency of metal ions: Comparison with oxidized and non-oxidized multi-walled carbon nanotubes. Talanta 75:127–134

    Article  CAS  Google Scholar 

  20. Lu C, Liu C, Rao GP (2008) Comparisons of sorbent cost for the removal of Ni2+ from aqueous solution by carbon nanotubes and granular activated carbon. J Hazard Mater 151:239–246

    Article  CAS  Google Scholar 

  21. Li YH, Ding J, Luan ZK, Di ZC, Zhu YF, Xu CL, Wu DH, Wei BQ (2003) Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 41:2787–2792

    Article  CAS  Google Scholar 

  22. Li L, Huang Y, Wang Y, Wang W (2009) Hemimicelle capped functionalized carbon nanotubes-based nanosized solid-phase extraction of arsenic from environmental water samples. Anal Chim Acta 631:182–188

    Article  CAS  Google Scholar 

  23. Wu H, Wen HY, Han BP, Du BX, Lu JS, Tian JY (2009) Simple micro-column with multi-walled carbon nanotubes for on-line preconcentration and determination of lead in natural water by hydride generation atomic fluorescence spectrometry. Microchim Acta . doi:10.1007/s00604-009-0161-3

    Google Scholar 

  24. Wu CH (2007) Studies of the equilibrium and thermodynamics of the adsorption of Cu2+ onto as-produced and modified carbon nanotubes. J Colloid Interface Sci 311:338–346

    Article  CAS  Google Scholar 

  25. Wang SG, Gong WX, Liu XW, Yao YW, Gao BY, Yue QY (2007) Removal of lead(II) from aqueous solution by adsorption onto manganese oxide-coated carbon nanotubes. Sep Purif Technol 58:17–23

    Article  CAS  Google Scholar 

  26. Chen SZ, Zhan XL, Lu DB, Liu C, Zhu L (2009) Speciation analysis of inorganic arsenic in natural water by carbon nanofibers separation and inductively coupled plasma mass spectrometry determination. Anal Chim Acta 634:192–196

    Article  CAS  Google Scholar 

  27. Chen SZ, Zhan XL, Lu DB, Yang M (2008) Study on adsorption behavior of Mn(II) and Mn(VII) on modified carbon nanofibers and their determination by inductively coupled plasma mass spectrometry. At Spectrosc 29:45–50

    Google Scholar 

  28. Valcarcel M, Cardenas S, Simonet BM, Moliner-Martinez Y, Lucena R (2008) Carbon nanostructures as sorbent materials in analytical processes. Trends Anal Chem 27:34–43

    Article  CAS  Google Scholar 

  29. Rao GP, Lu C, Su FS (2007) Sorption of divalent metal ions from aqueous solution by carbon nanotubes: A review. Sep Purif Technol 58:224–231

    Article  CAS  Google Scholar 

  30. Pyrzynska K (2007) Application of carbon sorbents for the concentration and separation of metal ions. Anal Sci 23:631–637

    Article  CAS  Google Scholar 

  31. Niu HY, Shi YL, Cai YQ, Wei FS, Jiang GB (2009) Solid-phase extraction of sulfonylurea herbicides from water samples with single-walled carbon nanotubes disk. Microchim Acta 164:431–438

    Article  CAS  Google Scholar 

  32. Pyrzynska K, Stafiej A, Biesaga M (2007) Sorption behavior of acidic herbicides on carbon nanotubes. Microchim Acta 159:293–298

    Article  CAS  Google Scholar 

  33. Merkoci A (2006) Carbon nanotubes: exciting new materials for microanalysis and sensing. Microchim Acta 152:155–156

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiong Jia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, X., Song, N., Jia, Q. et al. Determination of Cu, Zn, Mn, and Pb by microcolumn packed with multiwalled carbon nanotubes on-line coupled with flame atomic absorption spectrometry. Microchim Acta 166, 329–335 (2009). https://doi.org/10.1007/s00604-009-0204-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-009-0204-9

Keywords

Navigation