Skip to main content
Log in

Layer-by-layer electrochemical assembly of poly(diphenylamine)/phosphotungstic acid as ascorbic acid sensor

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A layer-by-layer (LbL) film assembly was constructed that comprises alternative layers of poly(diphenylamine) (PDPA) and phosphotungstic acid (PTA). First, a layer of oxidized PDPA (referred to as PDPA(+)) was deposited by electropolymerization. Then, a layer of negatively charged PTA was deposited on the PDPA(+) layer . This processes was repeated several times to obtain multilayer LbL film (PDPA/PTA)n, where n is the number of double layers. The LbLs were characterized by UV-Vis spectroscopy, FT-IR spectroscopy and X- ray diffraction spectroscopy. The process of formation of the LbL assembly was monitored by electrochemical methods. Electrochemical studies revealed that this LbL film possesses a remarkable electrocatalytic activity towards oxidation of ascorbic acid in neutral aqueous medium. The enhanced electrocatalytic activity of (PDPA/PTA)n LbL film is attributed to the existence of tungsten atoms in the interlayers of PDPA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. McQuade DT, Pullen AE, Swager TM (2000) Conjugated polymer-based chemical sensors. Chem Rev 100:2537

    Article  CAS  Google Scholar 

  2. Mullane APO, Dale SE, Day TM, Wilson NR, Macpherson JV, Unwin PR (2006) Formation of polyaniline/Pt nanoparticle composite films and their electrocatalytic properties. J Solid State Electrochem 10:792

    Article  Google Scholar 

  3. Patil AO, Ikenoue Y, Wudl F, Heeger AJ (1987) Water soluble conducting polymers. J Am Chem Soc 109:1858

    Article  CAS  Google Scholar 

  4. Chandrasekhar P, Masulaitis AM, Gumbs RW (1990) Novel synthesis, spectroelectrochemical, electrochemical and chronovoltabsorptometric characterization of poly(isothianaphthene). Synth Met 36:303

    Article  CAS  Google Scholar 

  5. Guay J, Paynter R, Dao LH (1990) Synthesis and characterization of poly(diarylamines): a new class of electrochromic conducting polymers. Macromolecules 23:3598

    Article  CAS  Google Scholar 

  6. Suganandam K, Santhosh P, Sankarasubramanian M, Gopalan A, Vasudevan T, Lee KP (2005) Fe3+ ion sensing characteristics of polydiphenylamine—electrochemical and spectroelectrochemical analysis. Sens Actuators B 105:223

    Article  Google Scholar 

  7. Bagheri A, Nateghi MR, Massoumi A (1998) Electrochemical synthesis of highly electroactive polydiphenylamine/polybenzidine copolymer in aqueous solutions. Synth Met 97:85

    Article  CAS  Google Scholar 

  8. Huang LM, Wen TC, Gopalan A, Ren F (2003) Structural influence on the electronic properties of methoxy substituted polyaniline/aluminum Schottky barrier diodes. Materials Sci Eng B 104:88

    Article  Google Scholar 

  9. Toth JE, Anson FC (1989) Electrocatalytic reduction of nitrite and nitric oxide to ammonia with iron-substituted polyoxotungstates. J Am Chem Soc 111:2444

    Article  CAS  Google Scholar 

  10. Peilchowski K, Hasik M (1997) Thermal properties of new catalysts based on heteropolyanion-doped polyaniline. Synth Met 89:199

    Article  Google Scholar 

  11. Koziel K, Lapkowski M, Vieil E (1997) Microgravimetric and laser beam deflection studies of redox reactions in polyantline at various concentrations of doping anions. Synth Met 84:91

    Article  CAS  Google Scholar 

  12. Lapkowski M, Bidan G, Fournier M (1991) Synthesis of polypyrrole and polythiophene in aqueous solution of Keggin-type structure heteropolyanions. Synth Met 41:407

    Article  CAS  Google Scholar 

  13. Cheng SA, Otero TF (2002) Electrogeneration and electrochemical properties of hybrid materials: polypyrrole doped with polyoxometalates PW12–xMoxO 3−40 (x = 0, 3, 6, 12). Synth Met 129:53

    Article  CAS  Google Scholar 

  14. Sadakane M, Steckhan E (1998) Electrochemical properties of polyoxometalates as electrocatalysts. Chem Rev 98:219

    Article  CAS  Google Scholar 

  15. Mizuno N, Misono M (1998) Heterogeneous catalysis. Chem Rev 98:199

    Article  CAS  Google Scholar 

  16. Keita B, Nadjo L (1988) Surface modifications with heteropoly and isopoly oxometalates: part I. Qualitative aspects of the activation of electrode surfaces towards the hydrogen evolution reaction. J Electroanal Chem 243:87

    Article  CAS  Google Scholar 

  17. McCormac T, Farrell D, Drennan D, Bidan G (2001) Immobilization of a series of Dawson type heteropolyanions. Electroanalysis 13:836

    Article  CAS  Google Scholar 

  18. Gaspar S, Mursen A, Patrut A, Popescu IC (1999) PFeW11-doped polymer film modified electrodes and their electrocatalytic activity for H2O2 reduction. Anal Chim Acta 385:111

    Article  CAS  Google Scholar 

  19. Martel D, Kuhn A (2000) Electrocatalytic reduction of H2O2 at P2Mo18O62 6− modified glassy carbon. Electrochim Acta 45:1829

    Article  CAS  Google Scholar 

  20. Kuhn A, Mano N, Vidal C (1999) Polyoxometalate modified electrodes: from a monolayer to multilayer structures. J Electroanal Chem 462:187

    Article  CAS  Google Scholar 

  21. Lui JY, Cheng L, Dong S (2002) Assembly of the transition metal substituted polyoxometalates ZnW11M(H2O)O (M = Mn, Cu, Fe, Co, Cr, Ni, Zn) on 4-aminobenzoic acid modified glassy carbon electrode and their electrochemical study. Electroanalysis 14:569

    Article  Google Scholar 

  22. Wang P, Wang X, Bi L, Zhu G (2000) Renewable-surface amperometric nitrite sensor based on sol-gel-derived silicomolybdate–methylsilicate–graphite composite material. Analyst 125:1291

    Article  CAS  Google Scholar 

  23. Wang XL, Wang EB, Lan Y, Hu CW (2002) Renewable PMo12-based inorganic–organic hybrid material bulk-modified carbon paste electrode: preparation electrochemistry and electrocatalysis. Electroanalysis 14:1116

    Article  CAS  Google Scholar 

  24. Fou AC, Rubner MF (1995) Molecular-level processing of conjugated polymers. 2. Layer-by-layer manipulation of in-situ polymerized p-type doped conducting polymers. Macromolecules 28:7115

    Article  CAS  Google Scholar 

  25. Losche M, Schmitt J, Decher G, Bouwman WG, Kjaer K (1998) Detailed structure of molecularly thin polyelectrolyte multilayer films on solid substrates as revealed by neutron reflectometry. Macromolecules 31:8893

    Article  Google Scholar 

  26. Dai Z, Dahne L, Donath E, Mohwald H (2002) Downhill energy transfer via ordered multichromophores in light-harvesting capsules. J Phys Chem B 106:11501

    Article  CAS  Google Scholar 

  27. Kaschak DM, Lean JT, Waraksa CC, Saupe GB, Usami H, Mallouk TE (1999) Photoinduced energy and electron transfer reactions in lamellar polyanion/polycation thin films: toward an inorganic “leaf”. J Am Chem Soc 121:3435

    Article  CAS  Google Scholar 

  28. Qian L, Gao Q, Song Y, Li Z, Yang X (2005) Layer-by-layer assembled multilayer films of redox polymers for electrocatalytic oxidation of ascorbic acid. Sens Actuators B 107:303

    Article  Google Scholar 

  29. Ragupathy D, Gopalan AI, Lee KP, Manesh KM (2008) Electro-assisted fabrication of layer-by-layer assembled poly(2, 5-dimethoxyaniline)/phosphotungstic acid modified electrode and electrocatalytic oxidation of ascorbic acid. Electrochem Commun 10:527

    Article  CAS  Google Scholar 

  30. Zhai X, Wei W, Zeng J, Gong S, Yin J (2006) Layer-by-Layer assembled film based on chitosan/carbon nanotubes, and its application to electrocatalytic oxidation of NADH. Microchim Acta 154:315

    Article  CAS  Google Scholar 

  31. Huang LM, Wen TC, Gopalan A (2003) Synthesis and characterization of soluble conducting poly(aniline-co-2, 5-dimethoxyaniline). Mater Lett 57:1765

    Article  CAS  Google Scholar 

  32. Yang H, Bard AJ (1992) The application of fast scan cyclic voltammetry. Mechanistic study of the initial stage of electropolymerization of aniline in aqueous solutions. J Electroanal Chem 339:423

    Article  CAS  Google Scholar 

  33. Showkat AM, Lee KP, Gopalan AI, Kim MS, Choi SH, Kang HD (2005) A novel self-assembly approach to form tubular poly(diphenylamine) inside the mesoporous silica. Polymer 46:1804

    Article  CAS  Google Scholar 

  34. Chung CY, Wen TC, Gopalan A (2001) Identification of electrochromic sites in poly(diphenylamine) using a novel absorbance–potential–wavelength profile. Electrochem Acta 47:423

    Article  CAS  Google Scholar 

  35. Rajendran V, Gopalan A, Vasudevan T, Wen TC (2000) Electrochemical copolymerization of diphenylamine with aniline by a pulse potentiostatic method. J Electrochem Soc 147:3014

    Article  CAS  Google Scholar 

  36. Sathiyanarayanan S, Muthukrishnan S, Venkatachari G (2006) Synthesis and anticorrosion properties of polydiphenylamine blended vinyl coatings. Synth Met 156:1208

    Article  CAS  Google Scholar 

  37. Yanchun Z, Miao C, Xiang L, Tao X, Weimin L (2005) Electrochemical synthesis of polydiphenylamine nanofibrils through AAO template. Mater Chem Phys 91:518

    Article  Google Scholar 

  38. Gopalan AI, Lee KP, Hong MH, Santhosh P, Manesh KM, Kim SH (2006) Nanostructuring of poly(diphenylamine) inside the galleries of montmorillonite organo clay through self-assembly approach. J Nanosci Nanotechnol 6:1

    Article  Google Scholar 

  39. Gopalan A, Lee KP, Manesh KM, Santhosh P, Kim JH, Kang JS (2007) Electrochemical determination of dopamine and ascorbic acid at a novel gold nanoparticles distributed poly(4-aminothiophenol) modified electrode. Talanta 71:1774

    Article  CAS  Google Scholar 

  40. Zhang L, Lian J (2007) Electrochemical synthesis of copolymer of aniline and o-aminophenol and its use to the electrocatalytic oxidation of ascorbic acid. J Electroanal Chem 611:51

    Article  CAS  Google Scholar 

  41. Ribeiro ES, Kubota LT (2006) Immobilization of hexacyanoferrate on a gold self-assembled monolayer, and its application as a sensor for ascorbic acid. Microchim Acta 154:303

    Article  CAS  Google Scholar 

  42. O’Connell PJ, Gormally C, Pravda M, Guilbault GG (2001) Development of an amperometric L-ascorbic acid (vitamin C) sensor based on electropolymerised aniline for pharmaceutical and food analysis. Anal Chim Acta 431:239

    Article  Google Scholar 

  43. Turkusic E, Milicevic V, Tahmiscija H, Vehabocic M, Basic S, Amidzic V (2000) Amperometric sensor for L-ascorbic acid determination based on MnO2 bulk modified screen printed electrode. Fresenius' J Anal Chem 368:466

    Article  CAS  Google Scholar 

  44. Casella IG, Guascito MR (1997) Electrocatalysis of ascorbic acid on the glassy carbon electrode chemically modified with polyaniline films. Electroanalysis 9:1381

    Article  CAS  Google Scholar 

  45. Mohadesi A, Taher MA (2007) Electrochemical behavior of Naphthol green B doped in polypyrrole film and its application for electrocatalytic oxidation of ascorbic acid. Sens Actuators, B 123:733–733

    Article  Google Scholar 

  46. Zhang L, Dong S (2004) The electrocatalytic oxidation of ascorbic acid on polyaniline film synthesized in the presence of camphorsulfonic acid. J Electroanal Chem 568:189

    Article  CAS  Google Scholar 

  47. Raoof JB, Ojani R, Nadimi SR (2004) Preparation of polypyrrole/ferrocyanide films modified carbon paste electrode and its application on the electrocatalytic determination of ascorbic acid. Electrochim Acta 49:271

    Article  CAS  Google Scholar 

  48. Zhang L (2007) The electrocatalytic oxidation of ascorbic acid on polyaniline film synthesized in the presence of β-naphthalenesulfonic acid. Electrochim Acta 52:6969

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by KOSEF-2008-05994 and Korean Research Foundation Grant (KRF-2006-C00001). The authors acknowledge the Korea Basic Science Institute (Daegu and Daejon, Korea) and Kyungpook National University Center for Scientific Instrument.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwang-Pill Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ragupathy, D., Gopalan, A.I. & Lee, KP. Layer-by-layer electrochemical assembly of poly(diphenylamine)/phosphotungstic acid as ascorbic acid sensor. Microchim Acta 166, 303–310 (2009). https://doi.org/10.1007/s00604-009-0201-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-009-0201-z

Keywords

Navigation