Kinetics of the labeling reactions of thymine, cytosine and uracil with osmium tetroxide bipyridine

Abstract

The electroactive complex osmium tetroxide bipyridine holds great promise as a covalent label for biosensor applications regarding nucleic acids and protein detection. Labeling can easily be performed in the laboratory. Until now, almost only DNA species have been investigated using this label. Thymine (which occurs exclusively in DNA) is known to react much faster than cytosine and uracil. In order to explore the possibilities to modify and detect also RNA species in a timely fashion, we have investigated the kinetics of reactions of osmium tetroxide bipyridine with the pyrimidine bases in the micromolar concentration range at different temperatures by means of spectrophotometry. Results were confirmed using voltammetric detection for the determination of labeled oligonucleotides. The modification reaction can be easily completed at room temperature within 7 h, even in case of cytosine and uracil. At 60 °C, 3 h are sufficient for complete modification of all pyrimidine bases that are found in natural nucleic acids. These findings will be important for future biosensor applications with RNA species as target molecules.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Palecek E, Lukasova E, Jelen F, Vojtiskova M (1981) Electrochemical analysis of polynucleotides. Bioelectrochem Bioenerg 8:497–506

    Article  CAS  Google Scholar 

  2. 2.

    Lukasova E, Jelen F, Palecek E (1982) Electrochemistry of osmium nucleic-acid complexes—a probe for single-stranded and distorted double-stranded regions in DNA. Gen Physiol Biophys 1:53–70

    Google Scholar 

  3. 3.

    Palecek E, Hung MA (1983) Determination of nanogram quantities of osmium-labeled nucleic-acids by stripping (inverse) voltammetry. Anal Biochem 132:236–242

    Article  CAS  Google Scholar 

  4. 4.

    Lukasova E, Vojtiskova M, Jelen F, Sticzay T, Palecek E (1984) Osmium-induced alteration in DNA-structure. Gen Physiol Biophys 3:175–191

    CAS  Google Scholar 

  5. 5.

    Chang CH, Beer M, Marzilli LG (1977) Osmium-labeled polynucleotides—Reaction of osmium-tetroxide with deoxyribonucleic-acid and synthetic polynucleotides in presence of tertiary nitrogen donor ligands. Biochemistry 16:33–38

    Article  CAS  Google Scholar 

  6. 6.

    Daniel FB, Behrman EJ (1975) Reactions of osmium ligand complexes with nucleosides. J Am Chem Soc 97:7352–7358

    Article  CAS  Google Scholar 

  7. 7.

    Daniel FB, Behrman EJ (1976) Osmium(VI) complexes of 3′, 5′-dinucleoside monophosphates, APU and UPA. Biochemistry 15:565–568

    Article  CAS  Google Scholar 

  8. 8.

    Schröder M (1980) Osmium tetroxide cis-hydroxylation of unsaturated substrates. Chem Rev 80:187–213

    Article  Google Scholar 

  9. 9.

    Havran L, Fojta M, Palecek E (2004) Voltammetric behavior of DNA modified with osmium tetroxide 2, 2′-bipyridine at mercury electrodes. Bioelectrochemistry 63:239–243

    Article  CAS  Google Scholar 

  10. 10.

    Fojta M, Havran L, Kizek R, Billova S (2002) Voltammetric microanalysis of DNA adducts with osmium tetroxide, 2, 2′-bipyridine using a pyrolytic graphite electrode. Talanta 56:867–874

    Article  CAS  Google Scholar 

  11. 11.

    Fojta M, Havran L, Billova S, Kostecka P, Masarik M, Kizek R (2003) Two-surface strategy in electrochemical DNA hybridization assays: detection of osmium-labeled target DNA at carbon electrodes. Electroanalysis 15:431–440

    Article  CAS  Google Scholar 

  12. 12.

    Jelen F, Karlovsky P, Makaturova E, Pecinka P, Palecek E (1991) Osmium-tetroxide reactivity of DNA bases in nucleotide sequencing and probing of DNA-structure. Gen Physiol Biophys 10:461–473

    CAS  Google Scholar 

  13. 13.

    Flechsig GU, Reske T (2007) Electrochemical detection of DNA hybridization by means of osmium tetroxide complexes and protective oligonucleotides. Anal Chem 79:2125–2130

    Article  CAS  Google Scholar 

  14. 14.

    Peter J, Reske T, Flechsig GU (2007) Comparison of DNA hybridization at rotating and heated gold disk electrodes. Electroanalysis 19:1356–1361

    Article  CAS  Google Scholar 

  15. 15.

    Fojta M, Billova S, Havran L, Pivonkova H, Cernocka H, Horakova P, Palecek E (2008) Osmium tetroxide, 2, 2′-bipyridine: electroactive marker for probing accessibility of tryptophan residues in proteins. Anal Chem 80:4598–4605

    Article  CAS  Google Scholar 

  16. 16.

    Palecek E (1992) Probing DNA-structure with osmium-tetroxide complexes in vitro. Methods Enzymol 212:139–155

    Article  CAS  Google Scholar 

  17. 17.

    Sopha H, Wachholz F, Flechsig GU (2008) Cathodic adsorptive stripping voltammetric detection of tRNA by labelling with osmium tetroxide. Electrochem Commun 10:1614–1616

    Article  CAS  Google Scholar 

  18. 18.

    Subbaraman LR, Subbaraman J, Behrman EJ (1972) Studies on formation and hydrolysis of osmate(VI) esters. Inorg Chem 11:2621–2627

    Article  CAS  Google Scholar 

  19. 19.

    Subbaraman LR, Subbaraman J, Behrman EJ (1973) Reaction of oxo-osmium(VI)-pyridine complexes with thymine glycols. J Org Chem 38:1499–1504

    Article  CAS  Google Scholar 

  20. 20.

    Kobs SF, Behrman EJ (1987) Complexation of osmium-tetroxide with tertiary-amines. Inorg Chim Acta 128:21–26

    Article  CAS  Google Scholar 

  21. 21.

    Kobs SF, Behrman EJ (1987) Reactions of osmium-tetroxide with imidazoles. Inorg Chim Acta—Bioinorg Chem 138:113–120

    Article  CAS  Google Scholar 

  22. 22.

    Reske T, Mix M, Bahl H, Flechsig GU (2007) Electrochemical detection of osmium tetroxide-labeled PCR-products by means of protective strands. Talanta 74:393–397

    Article  CAS  Google Scholar 

  23. 23.

    Moore WJ (1990) Grundlagen der Physikalischen Chemie. Walter de Gruyter Verlag, Berlin, p 373

    Google Scholar 

  24. 24.

    Beckmann A, Coles BA, Compton RG, Gründler P, Marken F, Neudeck A (2000) Modeling hot wire electrochemistry. Coupled heat and mass transport at a directly and continuously heated wire. J Phys Chem B 104:764–769

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project has been supported financially by the Deutsche Forschungsgemeinschaft (DFG, FL 384/4-2, 7-1, 8-1).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gerd-Uwe Flechsig.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Reske, T., Surkus, A., Duwensee, H. et al. Kinetics of the labeling reactions of thymine, cytosine and uracil with osmium tetroxide bipyridine. Microchim Acta 166, 197–201 (2009). https://doi.org/10.1007/s00604-009-0195-6

Download citation

Keywords

  • Osmium tetroxide bipyridine
  • Pyrimidine bases
  • UV spectrophotometry
  • Reaction kinetics
  • Activation energy