Skip to main content
Log in

Electrochemical studies of calcium dobesilate and interaction with DNA

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

The electrochemical behavior of calcium dobesilate (CD) and its interaction with DNA were explored using voltammetry and UV spectroscopy. The results show that CD could interact with DNA molecules by intercalation, forming a non-electroactive complex. CD has excellent electrochemical activity on a gold nanoparticle-modified glassy carbon electrode with a couple of redox peaks. In the presence of DNA, the peak current of CD decreases and the peak potential is shifted positively, but no new peak appears. The binding of CD with DNA, analyzed in terms of the cooperative Hill model, yields an association constant of 2.63 × 103 L·mol−1 and a Hill coefficient of m ≈ 2. These results may serve as a reference for in vivo investigation of the interaction of CD with DNA base pairs in living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zeglis BM, Pierre VC, Barton JK (2007) Metallo-intercalators and metallo-insertors. Chem Commun 44:4565

    Article  Google Scholar 

  2. Zhang GM, Shuang SM, Dong C, Liu DS, Choi M (2004) Investigation on DNA assembly to neutral red-cyclodextrin complex by molecular spectroscopy. J Photochem Photobiol B 74:127

    Article  CAS  Google Scholar 

  3. Bijaya KS, Kalyan SG, Rabindranath B, Swagata D (2008) Studies on the interaction of diacetylcurcumin with calf thymus-DNA. Chem Phys 351:163

    Article  Google Scholar 

  4. Sandström K, Wärmländer S, Leijon M, Gräslund A (2003) 1H NMR studies of selective interactions of norfloxacin with double-stranded DNA. Biochem Biophys Res Commun 304:55

    Article  Google Scholar 

  5. Arkin MR, Stemp E, Turro C, Turro NJ, Barton JK (1996) Luminescence quenching in supramolecular systems: a comparison of DNA- and SDS micelle-mediated photoinduced electron transfer between metal complexes. J Am Chem Soc 118:2267

    Article  CAS  Google Scholar 

  6. Wang LR, Qu N, Guo LH (2008) Electrochemical displacement method for the investigation of the binding interaction of polycyclic organic compounds with DNA. Anal Chem 80:3910

    Article  CAS  Google Scholar 

  7. Chen JH, Zhang J, Zhuang Q, Chen J, Lin XH (2007) Electrochemical studies of the interaction of 2-Nitroacridone with DNA and determination of DNA. Electroanalysis 17:1765

    Article  Google Scholar 

  8. Li YQ, Guo YJ, Li XF, Pan JH (2007) Electrochemical studies of the interaction of basic brown G with DNA and determination of DNA. Talanta 71:123

    Article  CAS  Google Scholar 

  9. Carter MT, Rodriguez M, Bard AJ (1989) Voltammetric studies of the interaction of metal chelates with DNA. 2. tris-chelated complexes of cobalt( 111) and iron( 11) with 1,l0-Phenanthroline and 2,2′-Bipyridine. J Am Chem Soc 111:8901

    Article  CAS  Google Scholar 

  10. Carter MT, Bard AJ (1987) Voltammetric studies of the interaction of tris(1, 10-phenanthroline) cobalt(III) with DNA. J Am Chem Soc 109:7528

    Article  CAS  Google Scholar 

  11. Zhang N, Zhang XL (2007) Voltammetric study of the interaction of the ofloxacin-copper complex with DNA, and its analytical application. Microchim Acta 159:65

    Article  CAS  Google Scholar 

  12. Lin XH, Wan HY, Zhang YF, Chen JH (2008) Studies of the interaction between Aloe-emodin and DNA and preparation of DNA biosensor for detection of PML-RARα fusion gene in acute promyelocytic leukemia. Talanta 74:944

    Article  CAS  Google Scholar 

  13. Wang F, Xu YX, Zhao J, Hu SS (2007) Electrochemical oxidation of morin and interaction with DNA. Bioelectrochemistry 70:356

    Article  CAS  Google Scholar 

  14. Yang ZS, Zhang DP, Long HY, Liu YC (2008) Electrochemical behavior of gallic acid interaction with DNA and detection of damage to DNA. J Electroanal Chem 624:91

    Article  CAS  Google Scholar 

  15. Tian X, Song YH, Dong H, Ye BX (2008) Interaction of anticancer herbal drug berberine with DNA immobilized on the glassy carbon electrode. Bioelectrochemistry 73:18

    Article  CAS  Google Scholar 

  16. Tian X, Li FJ, Zhu L, Ye BX (2008) Study on the electrochemical behavior of anticancer herbal drug rutin and its interaction with DNA. J Electroanal Chem 621:1

    Article  CAS  Google Scholar 

  17. Wang XM, Chen HY, Li SY, Wang JD (1994) Studies of an inclusion complex of a redox-active barbiturate with β-cyclodextrin. Anal Chim Acta 290:349

    Article  CAS  Google Scholar 

  18. Sinzinger H, Rauscha F, Vinazzer H (1987) Platelet function and prostaglandins in patients with peripheral vascular disease treated with calcium dobesilate. Prostaglandins Leukot Med 29:1

    Article  CAS  Google Scholar 

  19. Barras JP, Michal M (1986) Effect of calcium dobesilate on blood viscosity in diabetic microangiopathy. Vasa 15:200

    CAS  Google Scholar 

  20. Zheng JB, Zhang Y, Yang PP (2007) An ionic liquid-type carbon paste electrode for electrochemical investigation and determination of calcium dobesilate. Talanta 73:920

    Article  CAS  Google Scholar 

  21. Zhang XH, Wang SM, Jia L, Xu ZX, Zeng Y (2008) An electrochemical sensor for determination of calcium dobesilate based on PoPD/MWNTs composite film modified glassy carbon electrode. J Biochem Biophys Methods 70:1203

    Article  CAS  Google Scholar 

  22. Wang SF, Xu Q, Zhang XG, Liu GD (2008) Sensitive electrochemical determination of calcium dobesilate on the carbon–iron nanoparticle modified glassy carbon electrode. Electrochem Commun 10:411

    Article  CAS  Google Scholar 

  23. Min Y, Jeanne C (2008) Label-free protein recognition two-dimensional array using nanomechanical sensors. Nano letters 8:520

    Article  Google Scholar 

  24. Thibault S, Aubriet H, Arnoult C, Ruch D (2008) Gold nanoparticles and a glucose oxidase based biosensor: an attempt to follow-up aging by XPS. Microchim Acta 163:211

    Article  CAS  Google Scholar 

  25. Wang C, Wang GF, Fang B (2009) Electrocatalytic oxidation of bilirubin at ferrocenecarboxamide modified MWCNT–gold nanocomposite electrodes. Microchim Acta 164:113

    Article  CAS  Google Scholar 

  26. Xu Z, Yue Q, Zhuang ZJ, Xiao D (2009) Flow injection amperometric determination of acetaminophen at a gold nanoparticle modified carbon paste electrode. Microchim Acta 164:387

    Article  CAS  Google Scholar 

  27. Zhang X, Shi F, Yu X, Liu H, Fu Y, Wang ZQ, Jiang L, Li X (2004) Polyelectrolyte multilayer as matrix for electrochemical deposition of gold clusters: toward super-hydrophobic surface. J Am Chem Soc 126:3064

    Article  CAS  Google Scholar 

  28. Bard AJ, Fanlkner LR (1980) Electrochemical methods fundamentals and applications. Wiley, New York

    Google Scholar 

  29. Anson FC (1964) Application of potentiostatic current integration to the study of the adsorption of cobalt (III) (ethylenedinitrilo(tetraacetate) on mercury electrodes. Anal Chem 36:932

    Article  CAS  Google Scholar 

  30. Long EC, Barton JK (1990) On demonstrating DNA intercalation. Acc Chem Res 23:271

    Article  CAS  Google Scholar 

  31. Zhu ZW, Li NQ (1999) Electrochemical studies of vitamin K3 interacting with hemoglobin and determination of hemoglobin. Electroanalysis 11:1146

    Article  Google Scholar 

Download references

Acknowledgements

The financial support from the Ministry of Science and Technology of China (Grant No. 2007CB607606, in the name of “973” Plan) is acknowledged. The authors would like to thank Dr. Laigui Yu for his kind help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuaizhi Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, H., Li, X., Zhang, J. et al. Electrochemical studies of calcium dobesilate and interaction with DNA. Microchim Acta 165, 415–420 (2009). https://doi.org/10.1007/s00604-009-0155-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-009-0155-1

Keywords

Navigation