Skip to main content
Log in

Controlled wrinkling as a novel method for the fabrication of patterned surfaces

  • Review Article
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

This article reviews recent applications of controlled wrinkling for creating structured and/or patterned interfaces, and its use in metrology. We discuss how wrinkles develop as a result of in-plane compression of thin sheets. As the wavelength of wrinkles is only dependent on elastic properties and thickness of the sheets, the phenomenon can be used in metrology for determination of elastic properties. The second aspect is its use for patterning and topographical structuring of surfaces. If mechanical properties and thickness are well controlled, wrinkle orientation and geometry can be tailored. Wavelengths between fractions of a micron and many micrometers are feasible. This process is based on a macroscopic deformation and upscaling to larger areas is possible which provides an attractive alternative to bottom-up or top-down approaches for surface patterning. We describe the formation of stable surface wrinkles in thin sheets of different materials having different surface chemistries, report on applications, and discuss the usefulness of wrinkles for building hierarchical structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Hoogenboom JP, Retif C, de Bres E, de Boer MV, van Langen-Suurling AK, Romijn J, van Blaaderen A (2004) Template-induced growth of close-packed and non-close-packed colloidal crystals during solvent evaporation. Nano Lett 4:205

    Article  CAS  Google Scholar 

  2. Hoogenboom JP, van Langen-Suurling AK, Romijn J, van Blaaderen A (2003) Hard-sphere crystals with hcp and non-close-packed structure grown by colloidal epitaxy. Phys Rev Lett 90:138301

    Article  CAS  Google Scholar 

  3. Hoogenboom JP, van Langen-Suurling AK, Romijn J, van Blaaderen A (2004) Epitaxial growth of a colloidal hard-sphere hcp crystal and the effects of epitaxial mismatch on crystal structure. Phys Rev E 69:051602

    Article  CAS  Google Scholar 

  4. Hynninen AP, Thijssen JHJ, Vermolen ECM, Dijkstra M, Van Blaaderen A (2007) Self-assembly route for photonic crystals with a bandgap in the visible region. Nat Mater 6:202

    Article  CAS  Google Scholar 

  5. van Blaaderen A (2004) Colloids under external control. MRS Bull 29:85

    Google Scholar 

  6. van Blaaderen A, Hoogenboom JP, Vossen DLJ, Yethiraj A, van der Horst A, Visscher K, Dogterom M (2003) Colloidal epitaxy: playing with the boundary conditions of colloidal crystallization. Faraday Discuss 123:107

    Article  Google Scholar 

  7. Vossen DLJ, Fific D, Penninkhof J, van Dillen T, Polman A, van Blaaderen A (2005) Combined optical tweezers/ion beam technique to tune colloidal masks for nanolithography. Nano Lett 5:1175

    Article  CAS  Google Scholar 

  8. Bechert DW, Bruse M, Hage W, Meyer R (2000) Fluid mechanics of biological surfaces and their technological application. Naturwissenschaften 87:157

    Article  CAS  Google Scholar 

  9. Reif WE (1985) Morphology and hydrodynamic effects of the scales of fast swimming sharks. Fortschr Zool 30:483

    Google Scholar 

  10. Wainwright SA, Vosburgh F, Hebrank JH (1978) Shark skin - function in locomotion. Science 202:747

    Article  Google Scholar 

  11. Barthlott W, Neinhuis C (1997) Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202:1

    Article  CAS  Google Scholar 

  12. Furstner R, Barthlott W, Neinhuis C, Walzel P (2005) Wetting and self-cleaning properties of artificial superhydrophobic surfaces. Langmuir 21:956

    Article  Google Scholar 

  13. Neinhuis C, Barthlott W (1997) Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann Bot 79:667

    Article  Google Scholar 

  14. Rechenberg I, Khyari E (2005) Der Sandskink der Sahara–Vorbild für Reibungs- und Verschleißminderung. Technische Universität Berlin. Available via http://bionik.tu-berlin.de/institute/bmbfwett.pdf. Accessed 6 Mar 2009

    Google Scholar 

  15. del Campo A, Arzt E (2008) Fabrication approaches for generating complex micro- and nanopatterns on polymeric surfaces. Chem Rev 108:911

    Article  Google Scholar 

  16. Bowden N, Brittain S, Evans AG, Hutchinson JW, Whitesides GM (1998) Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer. Nature 393:146

    Article  CAS  Google Scholar 

  17. Bowden N, Huck WTS, Paul KE, Whitesides GM (1999) The controlled formation of ordered, sinusoidal structures by plasma oxidation of an elastomeric polymer. Appl Phys Lett 75:2557

    Article  CAS  Google Scholar 

  18. Chua DBH, Ng HT, Li SFY (2000) Spontaneous formation of complex and ordered structures on oxygen-plasma-treated elastomeric polydimethylsiloxane. 76: 721

  19. Genzer J, Groenewold J (2006) Soft matter with hard skin: From skin wrinkles to templating and material characterization. Soft Matter 2:310

    Article  CAS  Google Scholar 

  20. Huck WTS, Bowden N, Onck P, Pardoen T, Hutchinson JW, Whitesides GM (2000) Ordering of spontaneously formed buckles on planar surfaces. Langmuir 16:3497

    Article  CAS  Google Scholar 

  21. Volynskii AL, Bazhenov S, Lebedeva OV, Bakeev NF (2000) Mechanical buckling instability of thin coatings deposited on soft polymer substrates. J Mater Sci 35:547

    Article  CAS  Google Scholar 

  22. Cerda E, Mahadevan L (2003) Geometry and physics of wrinkling. Phys Rev Lett 90:074302

    Article  CAS  Google Scholar 

  23. Cerda E, Ravi-Chandar K, Mahadevan L (2002) Thin films - Wrinkling of an elastic sheet under tension. Nature 419:479

    Article  Google Scholar 

  24. Groenewold J (2001) Wrinkling of plates coupled with soft elastic media. Physica A 298:32

    Article  Google Scholar 

  25. Martin GC, Su TT, Loh IH, Balizer E, Kowel ST, Kornreich P (1982) The metallization of silicone polymers in the rubbery and the glassy state. J Appl Phys 53:797

    Article  CAS  Google Scholar 

  26. Chen X, Hutchinson JW (2004) Herringbone buckling patterns of compressed thin films on compliant substrates. J Appl Mech 71:597

    Article  Google Scholar 

  27. Efimenko K, Wallace WE, Genzer J (2002) Surface modification of Sylgard-184 poly(dimethyl siloxane) networks by ultraviolet and ultraviolet/ozone treatment. J Colloid Interface Sci 254:306

    Article  CAS  Google Scholar 

  28. Ouyang M, Yuan C, Muisener RJ, Boulares A, Koberstein JT (2000) Conversion of some siloxane polymers to silicon oxide by UV/ozone photochemical processes. Chem Mater 12:1591

    Article  CAS  Google Scholar 

  29. Genzer J, Efimenko K (2000) Creating long-lived superhydrophobic polymer surfaces through mechanically assembled monolayers. Science 290:2130

    Article  CAS  Google Scholar 

  30. Efimenko K, Genzer J (2001) How to prepare tunable planar molecular chemical gradients. Adv Mater 13:1560

    Article  CAS  Google Scholar 

  31. Efimenko K, Rackaitis M, Manias E, Vaziri A, Mahadevan L, Genzer J (2005) Nested self-similar wrinkling patterns in skins. Nat Mater 4:293

    Article  CAS  Google Scholar 

  32. Harrison C, Stafford CM, Zhang WH, Karim A (2004) Sinusoidal phase grating created by a tunably buckled surface. Appl Phys Lett 85:4016

    Article  CAS  Google Scholar 

  33. Stafford CM, Harrison C, Beers KL, Karim A, Amis EJ, Vanlandingham MR, Kim HC, Volksen W, Miller RD, Simonyi EE (2004) A buckling-based metrology for measuring the elastic moduli of polymeric thin films. Nat Mater 3:545

    Article  CAS  Google Scholar 

  34. Lu C, Donch I, Nolte M, Fery A (2006) Au nanoparticle-based multilayer ultrathin films with covalently linked nanostructures: spraying layer-by-layer assembly and mechanical property characterization. Chem Mater 18:6204

    Article  CAS  Google Scholar 

  35. Lu CH, Mohwald H, Fery A (2007) A lithography-free method for directed colloidal crystal assembly based on wrinkling. Soft Matter 3:1530

    Article  CAS  Google Scholar 

  36. Decher G, Hong JD, Schmitt J (1992) Buildup of ultrathin multilayer films by a self-assembly process .3. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films 210:831

    Article  Google Scholar 

  37. Decher G (1997) Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277:1232

    Article  CAS  Google Scholar 

  38. Bertrand P, Jonas A, Laschewsky A, Legras R (2000) Ultrathin polymer coatings by complexation of polyelectrolytes at interfaces: suitable materials, structure and properties. Macromol Rapid Commun 21:319

    Article  CAS  Google Scholar 

  39. Mertz D, Hemmerle J, Boulmedais F, Voegel JC, Lavalle P, Schaaf P (2007) Polyelectrolyte multilayer films under mechanical stretch. Soft Matter 3:1413

    Article  CAS  Google Scholar 

  40. Nolte AJ, Cohen RE, Rubner MF (2006) A two-plate buckling technique for thin film modulus measurements: applications to polyelectrolyte multilayers. Macromolecules 39:4841

    Article  CAS  Google Scholar 

  41. Nolte AJ, Rubner MF, Cohen RE (2005) Determining the young’s modulus of polyelectrolyte multilayer films via stress-induced mechanical buckling instabilities. Macromolecules 38:5367

    Article  CAS  Google Scholar 

  42. Huang ZY, Hong W, Suo Z (2004) Evolution of wrinkles in hard films on soft substrates. Phys Rev E 70:030601

    Article  Google Scholar 

  43. Lin PC, Yang S (2007) Spontaneous formation of one-dimensional ripples in transit to highly ordered two-dimensional herringbone structures through sequential and unequal biaxial mechanical stretching. Appl Phys Lett 90:241903

    Article  Google Scholar 

  44. Mei HX, Huang R, Chung JY, Stafford CM, Yu HH (2007) Buckling modes of elastic thin films on elastic substrates. Appl Phys Lett 90:151902

    Article  Google Scholar 

  45. Sridhar N, Srolovitz DJ, Suo Z (2001) Kinetics of buckling of a compressed film on a viscous substrate. Appl Phys Lett 78:2482

    Article  CAS  Google Scholar 

  46. Biot MA (1937) Bending of an infinite beam on an elastic foundation. J Appl Mech 4:1

    Google Scholar 

  47. Biot MA (1965) Mechanics of incremental deformation. John Wiley & Sons Inc., New York

    Google Scholar 

  48. Landau LD, Lifshitz EM (1965) Theorie of elasticity. Butterworth-Heinemann, Moskow

    Google Scholar 

  49. Pretzl M, Schweikart A, Hanske C, Chiche A, Zettl U, Horn A, Boker A, Fery A (2008) A lithography-free pathway for chemical microstructuring of macromolecules from aqueous solution based on wrinkling. Langmuir 24:12748

    Article  CAS  Google Scholar 

  50. Chiche A, Stafford CM, Cabral JT (2008) Complex micropatterning of periodic structures on elastomeric surfaces. Soft Matter 4:2360

    Article  CAS  Google Scholar 

  51. Huang R (2005) Kinetic wrinkling of an elastic film on a viscoelastic substrate. J Mech Phys Solids 53:63

    Article  Google Scholar 

  52. Jiang HQ, Khang DY, Song JZ, Sun YG, Huang YG, Rogers JA (2007) Finite deformation mechanics in buckled thin films on compliant supports. Proc Nat Acad Sci USA 104:15607

    Article  CAS  Google Scholar 

  53. Huang ZY, Hong W, Suo Z (2005) Nonlinear analyses of wrinkles in a film bonded to a compliant substrate. J Mech Phys Solids 53:2101

    Article  CAS  Google Scholar 

  54. Jiang C, Singamaneni S, Merrick E, Tsukruk VV (2006) Complex buckling instability patterns of nanomembranes with encapsulated gold nanoparticle arrays. Nano Lett 6:2254

    Article  CAS  Google Scholar 

  55. Jiang CY, Wang XY, Gunawidjaja R, Lin YH, Gupta MK, Kaplan DL, Naik RR, Tsukruk VV (2007) Mechanical properties of robust ultrathin silk fibroin films. Adv Funct Mater 17:2229

    Article  CAS  Google Scholar 

  56. Huang H, Chung JY, Nolte AJ, Stafford CM (2007) Characterizing polymer brushes via surface wrinkling. Chem Mater 19:6555

    Article  CAS  Google Scholar 

  57. Butt HJ, Cappella B, Kappl M (2005) Force measurements with the atomic force microscope: technique, interpretation and applications. Surf Sci Rep 59:1

    Article  CAS  Google Scholar 

  58. Picart C, Senger B, Sengupta K, Dubreuil F, Fery A (2007) Measuring mechanical properties of polyelectrolyte multilayer thin films: novel methods based on AFM and optical techniques. Colloids Surf, A 303:30

    Article  CAS  Google Scholar 

  59. Huang J, Juszkiewicz M, de Jeu WH, Cerda E, Emrick T, Menon N, Russell TP (2007) Capillary wrinkling of floating thin polymer films. Science 317:650

    Article  CAS  Google Scholar 

  60. Jiang XY, Takayama S, Qian XP, Ostuni E, Wu HK, Bowden N, LeDuc P, Ingber DE, Whitesides GM (2002) Controlling mammalian cell spreading and cytoskeletal arrangement with conveniently fabricated continuous wavy features on poly(dimethylsiloxane). Langmuir 18:3273

    Article  CAS  Google Scholar 

  61. Uttayarat P, Toworfe GK, Dietrich F, Lelkes PI, Composto RJ (2005) Topographic guidance of endothelial cells on silicone surfaces with micro- to nanogrooves: orientation of actin filaments and focal adhesions. J Biomed Mater Res 75A:668

    Article  CAS  Google Scholar 

  62. Xia YN, Rogers JA, Paul KE, Whitesides GM (1999) Unconventional methods for fabricating and patterning nanostructures. Chem Rev 99:1823

    Article  CAS  Google Scholar 

  63. Allard M, Sargent EH, Lewis PC, Kumacheva E (2004) Colloidal crystals grown on patterned surfaces. Adv Mater 16:1360

    Article  CAS  Google Scholar 

  64. Cui Y, Bjork MT, Liddle JA, Sonnichsen C, Boussert B, Alivisatos AP (2004) Integration of colloidal nanocrystals into lithographically patterned devices. Nano Lett 4:1093

    Article  CAS  Google Scholar 

  65. Maury P, Escalante M, Reinhoudt DN, Huskens J (2005) Directed assembly of nanoparticles onto polymer-imprinted or chemically patterned templates fabricated by nanoimprint lithography. Adv Mater 17:2718

    Article  CAS  Google Scholar 

  66. Ozin GA, Yang SM (2001) The race for the photonic chip: colloidal crystal assembly in silicon wafers. Adv Funct Mater 11:95

    Article  CAS  Google Scholar 

  67. vanBlaaderen A, Ruel R, Wiltzius P (1997) Template-directed colloidal crystallization. Nature 385:321

    Article  CAS  Google Scholar 

  68. Winkleman A, Gates BD, McCarty LS, Whitesides GM (2005) Directed self-assembly of spherical particles on patterned electrodes by an applied electric field. Adv Mater 17:1507

    Article  CAS  Google Scholar 

  69. Xia DY, Brueck SRJ (2004) A facile approach to directed assembly of patterns of nanoparticles using interference lithography and spin coating. Nano Lett 4:1295

    Article  CAS  Google Scholar 

  70. Dziomkina NV, Vancso GJ (2005) Colloidal crystal assembly on topologically patterned templates. Soft Matter 1:265

    Article  CAS  Google Scholar 

  71. Juillerat F, Solak HH, Bowen P, Hofmann H (2005) Fabrication of large-area ordered arrays of nanoparticles on patterned substrates. Nanotechnology 16:1311

    Article  CAS  Google Scholar 

  72. Varghese B, Cheong FC, Sindhu S, Yu T, Lim CT, Valiyaveettil S, Sow CH (2006) Size selective assembly of colloidal particles on a template by directed self-assembly technique. Langmuir 22:8248

    Article  CAS  Google Scholar 

  73. Aizenberg J, Braun PV, Wiltzius P (2000) Patterned colloidal deposition controlled by electrostatic and capillary forces. Phys Rev Lett 84:2997

    Article  CAS  Google Scholar 

  74. Chen KM, Jiang XP, Kimerling LC, Hammond PT (2000) Selective self-organization of colloids on patterned polyelectrolyte templates. Langmuir 16:7825

    Article  CAS  Google Scholar 

  75. Jonas U, del Campo A, Kruger C, Glasser G, Boos D (2002) Colloidal assemblies on patterned silane layers. Proc Nat Acad Sci USA 99:5034

    Article  CAS  Google Scholar 

  76. Schreiber F (2000) Structure and growth of self-assembling monolayers. Prog Surf Sci 65:151

    Article  CAS  Google Scholar 

  77. Ulman A (1996) Formation and structure of self-assembled monolayers. Chem Rev 96:1533

    Article  CAS  Google Scholar 

  78. Edmondson S, Osborne VL, Huck WTS (2004) Polymer brushes via surface-initiated polymerizations. Chem Soc Rev 33:14

    Article  CAS  Google Scholar 

  79. Zhao B, Brittain WJ (2000) Polymer brushes: surface-immobilized macromolecules. Prog Polym Sci 25:677

    Article  CAS  Google Scholar 

  80. Brunette DM, Chehroudi B (1999) The effects of the surface topography of micromachined titanium substrata on cell behavior in vitro and in vivo. J Biomech Eng 121:49

    Article  CAS  Google Scholar 

  81. Curtis A, Wilkinson C (1997) Topographical control of cells. Biomaterials 18:1573

    Article  CAS  Google Scholar 

  82. Dunn GA (1991) How do cells respond to ultrafine surface contours. Bioessays 13:541

    Article  CAS  Google Scholar 

  83. Flemming RG, Murphy CJ, Abrams GA, Goodman SL, Nealey PF (1999) Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials 20:573

    Article  CAS  Google Scholar 

  84. Teixeira AI, Abrams GA, Bertics PJ, Murphy CJ, Nealey PF (2003) Epithelial contact guidance on well-defined micro- and nanostructured substrates. J Cell Sci 116:1881

    Article  CAS  Google Scholar 

  85. Weiss P (1958) Cell Contact. Int Rev Cytol 7:391

    Article  Google Scholar 

  86. Decher GS, Schlenoff J (2003) Multilayer thin films. John Wiley&Sons, Inc., Weinheim

    Google Scholar 

  87. Kumar A, Whitesides GM (1994) Patterned condensation figures as optical diffraction gratings. Science 263:60

    Article  CAS  Google Scholar 

  88. Whitesides GM, Ostuni E, Takayama S, Jiang XY, Ingber DE (2001) Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 3:335

    Article  CAS  Google Scholar 

  89. Xia YN, Whitesides GM (1998) Soft lithography. Angew Chem Int Ed 37:551

    Article  Google Scholar 

  90. Pompe T, Fery A, Herminghaus S, Kriele A, Lorenz H, Kotthaus JP (1999) Submicron contact printing on silicon using stamp pads. Langmuir 15:2398

    Article  CAS  Google Scholar 

  91. Yoo PJ, Lee HH (2008) Complex pattern formation by adhesion-controlled anisotropic wrinkling. Langmuir 24:6897

    Article  CAS  Google Scholar 

  92. Lu C, Möhwald H, Fery A (2008) Large-scale regioselective formation of well-defined wrinkles of multilayered films via embossing. Chem Mater 20:7052

    Article  CAS  Google Scholar 

  93. Chan EP, Smith EJ, Hayward RC, Crosby AJ (2008) Surface wrinkles for smart adhesion. Adv Mater 20:711

    Article  CAS  Google Scholar 

  94. Chung JY, Youngblood JP, Stafford CM (2007) Anisotropic wetting on tunable micro-wrinkled surfaces. Soft Matter 3:1163

    Article  CAS  Google Scholar 

  95. Dorrer C, Ruhe J (2008) Drops on microstructured surfaces coated with hydrophilic polymers: Wenzel’s model and beyond. Langmuir 24:1959

    Article  CAS  Google Scholar 

  96. Li W, Fang GP, Lij YF, Qiao GJ (2008) Anisotropic wetting behavior arising from superhydrophobic surfaces: Parallel grooved structure. J Phys Chem B 112:7234

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge financial support from German science foundation within SFB 481, “Complex Macromolecular and Hybrid Systems in Internal and External Fields”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Fery.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schweikart, A., Fery, A. Controlled wrinkling as a novel method for the fabrication of patterned surfaces. Microchim Acta 165, 249–263 (2009). https://doi.org/10.1007/s00604-009-0153-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-009-0153-3

Keywords

Navigation