Skip to main content

Advertisement

Log in

Modification of vertically aligned carbon nanotube arrays with palladium nanoparticles for electrocatalytic reduction of oxygen

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel type of palladium nanoparticles-modified multiwalled carbon nanotubes composite-electrode with electrocatalytic activity for oxygen reduction is presented. The nanocomposite was prepared by magnetron sputtering deposition with Pd in Ar atmosphere on MWNTs, which were synthesized on Ta plates by chemical vapor deposition. Both scanning electron microscopy and transmission electron microscopy were employed to observe the surface morphology. The Pd nanoparticles, with diameters around 5 nm, are dispersed at the tips and on the sidewalls of the MWNTs. Voltammetry, amperometry and electrochemical impedance measurements were used to demonstrate the strong electrocatalytic activity of the nanocomposite in acid solution. Compared to the bare MWNT electrode, the PdNPs/MWNT nanocomposite shows a positive shift of the O2 reduction current at onset potentials from +400 to +500 mV, a concurrent 1.5-fold increase in the O2 reduction peak current with high stability. The successful preparation of PdNPs/MWNTs nanocomposite by magnetron sputtering deposition opens a new path for an efficient dispersion of promising nanoparticles for fuel cells and O2 sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Saito R, Dresselhause G, Dresselhause MS (1998) Physical properties of carbon nanotube. Imperial College Press, London

    Google Scholar 

  2. Planeix JM, Coustel N, Coq B, Brotons V, Kumbhar PS, Dutartre R (1994) Application of carbon nanotubes as supports in heterogeneous catalysis. J Am Chem Soc 116:7935

    Article  CAS  Google Scholar 

  3. Liu CM, Cao HB, Li YP, Zhang Y (2006) Application of triple potential step amperometry method for quantitative electroanalysis. J New Mater Electrochem Syst 9:139

    CAS  Google Scholar 

  4. Li J, Cassell A, Delzeit L, Han J, Meyyappan M (2002) Novel three-dimensional electrodes: electrochemical properties of carbon nanotube ensembles. J Phys Chem B 106:9299

    Article  CAS  Google Scholar 

  5. Bachtold A, Henry M, Terrier C, Strunk C, Schönenberger C, Salvetat JP, Bonard JM, Forrö L (1998) Contacting carbon nanotubes selectively with low-ohmic contacts for four-probe electric measurements. Appl Phys Lett 73:274

    Article  CAS  Google Scholar 

  6. Chen JH, Wang MY, Liu B, Fan Z, Cui KZ, Kuang Y (2006) Platinum catalysts prepared with functional carbon nanotube defects and its improved catalytic performance for methanol oxidation. J Phys Chem B 110:11775

    Article  CAS  Google Scholar 

  7. Zhang WD, Wen Y, Liu SM, Tjiu WC, Xu GQ, Gan LM (2002) Synthesis of vertically aligned carbon nanotubes on metal deposited quartz plates. Carbon 40:1981

    Article  CAS  Google Scholar 

  8. Zhang WD, Yang F, Gu PY (2005) Carbon nanotubes grow to pillars. Nanotechnology 16:2442

    Article  CAS  Google Scholar 

  9. Ye JS, Wen Y, Zhang WD, Gan LM, Xu GQ, Sheu FS (2003) Selective voltammetric detection of uric acid in the presence of ascorbic acid at well-aligned carbon nanotube electrode. Electroanalysis 15:1693

    Article  CAS  Google Scholar 

  10. El-Deab MS, Ohsaka T (2002) An extraordinary electrocatalytic reduction of oxygen on gold nanoparticles-electrodeposited gold electrodes. Electrochem Commun 4:288

    Article  CAS  Google Scholar 

  11. Andreasen A, Danscher G, Juhl S, Stoltenberg M, Revsbech NP, Jensen H, Jensen KBJ (1997) Distinct differences in partial oxygen pressure at micrometer ranges in the rat hippocampal region. J Neurosci Methods 72:15

    Article  CAS  Google Scholar 

  12. Osborne PG, Li XF, Li YZ, Han HW (2001) Oxygen-sensing microdialysis probe for in vivo use. J Neurosci Res 63:224

    Article  Google Scholar 

  13. El-Deab MS, Ohsaka T (2002) Hydrodynamic voltammetric studies of the oxygen reduction at gold nanoparticles-electrodeposited gold electrodes. Electrochim Acta 47:4255

    Article  CAS  Google Scholar 

  14. Shen Y, Bi LH, Liu BF, Dong SJ (2003) Simple preparation method of Pd nanoparticles on an Au electrode and its catalysis for dioxygen reduction. New J Chem 27:938

    Article  CAS  Google Scholar 

  15. Ye XR, Lin YH, Wai CM (2003) Decorating catalytic palladium nanoparticles on carbon nanotubes in supercritical carbon dioxide. Chem Commun (5):642

  16. Lin YH, Cui XL, Ye XR (2005) Electrocatalytic reactivity for oxygen reduction of palladium-modified carbon nanotubes synthesized in supercritical fluid. Electrochem Commun 7:267

    Article  CAS  Google Scholar 

  17. Yang CC, Kumar AS, Zen JM (2006) Electrocatalytic reduction and determination of dissolved oxygen at a preanodized screen-printed carbon electrode modified with palladium nanoparticles. Electroanalysis 18:64

    Article  CAS  Google Scholar 

  18. Wei Z, Chan S (2004) Electrochemical deposition of PtRu on an uncatalyzed carbon electrode for methanol electrooxidation. J Electroanal Chem 569:23

    Article  CAS  Google Scholar 

  19. Zhao Y, Fan LH, Zhong HH, Li YF (2007) Electrodeposition and electrocatalytic properties of platinum nanoparticles on multi-walled carbon nanotubes: effect of the deposition conditions. Microchim Acta 158(3–4):327

    Article  CAS  Google Scholar 

  20. Zhu XH, Kang GF, Lin XQ (2007) PdCu alloy nanoclusters: generation and activity tuning for electrocatalytic oxidation of nitrite. Microchim Acta 159(1–2):141

    Article  CAS  Google Scholar 

  21. Wen Y, Ye JS, Zhang WD, Sheu FS, Xu GQ (2008) Electrocatalytic oxidation of methanol on platinum modified carbon nanotube electrode. Microchim Acta 162:235

    Article  CAS  Google Scholar 

  22. Cui HF, Ye JS, Zhang WD, Wang J, Sheu FS (2005) Electrocatalytic reduction of oxygen by a platinum nanoparticle/carbon nanotube composite electrode. J Electroanal Chem 577:295

    Article  CAS  Google Scholar 

  23. Ye JS, Cui HF, Wen Y, Zhang WD, Xu GQ, Sheu FS (2006) Electrodeposition of platinum nanoparticles on multi-walled carbon nanotubes for electrocatalytic oxidation of methano. Microchim Acta 152:267

    Article  CAS  Google Scholar 

  24. Li LH, Zhang WD, Ye JS (2008) Electrocatalytic oxidation of glucose at carbon nanotubes supported Pt–Ru nanoparticles electrode and its detection. Electroanalysis 20:2212

    Article  CAS  Google Scholar 

  25. Li LH, Zhang WD (2008) Preparation of carbon nanotubes supported platinum nanoparticles by organic colloidal process for nonenzymatic glucose sensing. Microchim Acta 163:305

    Article  CAS  Google Scholar 

  26. Ye JS, Cui HF, Liu X, Lim TM, Zhang WD, Sheu FS (2005) Preparation and characterization of aligned carbon nanotube–ruthenium oxide nanocomposite for supercapacitors. Small 1:560

    Article  CAS  Google Scholar 

  27. Ye JS, Wen Y, Zhang WD, Cui HF, Xu GQ, Sheu FS (2005) Electrochemical biosensing platforms using phthalocyanine-functionalized carbon nanotube electrode. Electroanalysis 17:89

    Article  CAS  Google Scholar 

  28. Ye JS, Wen Y, Zhang WD, Gan LM, Xu GQ, Sheu FS (2004) Nonenzymatic glucose detection using multi-walled carbon nanotube electrodes. Electrochem Commun 6:66

    Article  CAS  Google Scholar 

  29. Ye JS, Wen Y, Zhang WD, Gan LM, Xu GQ, Sheu FS (2004) Application of multi-walled carbon nanotubes functionalized with hemin for oxygen detection in neutral solution. J Electroanal Chem 562:241

    Article  CAS  Google Scholar 

  30. Zhang WD (2006) Growth of ZnO nanowires on modified well-aligned carbon nanotube arrays. Nanotechnology 17:1036

    Article  CAS  Google Scholar 

  31. Ye JS, Wen Y, Zhang WD, Cui HF, Xu GQ, Sheu FS (2006) Electrochemical functionalization of vertically aligned carbon nanotube arrays with molybdenum oxides for the development of a surface-charge-controlled sensor. Nanotechnology 17:3994

    Article  CAS  Google Scholar 

  32. Cui HF, Ye JS, Liu X, Zhang WD, Sheu FS (2006) Pt–Pb alloy nanoparticle/carbon nanotube nanocomposite: a strong electrocatalyst for glucose oxidation. Nanotechnology 17:2334

    Article  CAS  Google Scholar 

  33. Yeager E (1986) Dioxygen electrocatalysis: mechanisms in relation to catalyst structure. J Mol Catal 38:5

    Article  CAS  Google Scholar 

  34. Lu Y, Li J, Han J, Ng HT, Binder C, Partridge C, Meyyappan M (2004) Room temperature methane detection using palladium loaded single-walled carbon nanotube sensors. Chem Phys Lett 391:344

    Article  CAS  Google Scholar 

  35. Zhang J, Sasaki K, Sutter E, Adzic RR (2007) Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 315:220

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Ministry of Science and Technology (MOST) of China (2008AA06Z311) and the Natural Science Foundation of China (no. 20773041) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-De Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, JS., Bai, YC. & Zhang, WD. Modification of vertically aligned carbon nanotube arrays with palladium nanoparticles for electrocatalytic reduction of oxygen. Microchim Acta 165, 361–366 (2009). https://doi.org/10.1007/s00604-009-0143-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-009-0143-5

Keywords

Navigation