Skip to main content
Log in

Selective fluorometry of cytochrome c using glutathione-capped CdTe quantum dots in weakly basic medium

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Glutathione-capped CdTe quantum dots (GSH-CdTe QDs) were synthesized in aqueous medium. Their interactions with proteins, especially three heme-containing proteins, were investigated over a broad pH range. At 6.0 < pH < 8.0, the fluorescence of the GSH-CdTe QDs can be effectively quenched by cytochrome c (Cyt. c) and hemoglobin, respectively. At pH > 8.0, only cytochrome c quenched the fluorescence of the GSH-CdTe QDs, and no significant fluorescence changes were observed for hemoglobin or other proteins. Based on the distinct fluorescence response, a novel method has been developed for the selective determination of cytochrome c using GSH-CdTe QDs as the fluorescence probe at pH 9.0. Under optimum conditions, the linear range of the calibration curve is from 3.2 × 10−8 to 2.4 × 10−6 mol L−1 and the detection limit is 3.0 × 10−9 mol L−1. The method has been applied to the determination of cytochrome c in three synthetic and real samples, and satisfactory results were obtained with QDs through selecting the proper pH value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. He T, Chandramouli N, Fu E, Wu A, Wang YK (1999) Analysis of reduced and oxidized forms of cytochrome c by capillary electrophoresis and capillary electrophoresis-mass spectrometry. Anal Biochem 271:189

    Article  CAS  Google Scholar 

  2. Shen YH, Yang XF, Wu Y, Li C (2008) Sensitive spectrofluorimetric determination of cytochrome c with spirocyclic rhodamine B hydrazide in micellar medium. J Fluoresc 18:163

    Article  CAS  Google Scholar 

  3. Li RQ, Chen Y, Jiang FY, Fang L, Zhang XF (2005) Measurement of the quality of purified Cyt c products using kinetic spectrophotometry. Chinese J Anal Sci 21:463

    CAS  Google Scholar 

  4. Vargas C, Mcewan AG, Downie JA (1993) Detection of c-type cytochromes using enhanced chemiluminescence. Anal Biochem 209:323

    Article  CAS  Google Scholar 

  5. Wu YH, Hu SS (2007) Biosensors based on direct electron transfer in redox proteins. Microchim Acta 159:1

    Article  CAS  Google Scholar 

  6. Yang ZS, Chen X and Liu LP (2008) Direct electrochemical behavior of cytochrome c, and its determination on phytic acid modified electrode. Microchim Acta. doi 10.1007/s00604-008-0098-y

  7. Lin L, Qiu PH, Cao XN, Jin LT (2008) Colloidal silver nanoparticles modified electrode and its application to the electroanalysis of cytochrome c. Electrochim Acta 53:5368

    Article  CAS  Google Scholar 

  8. Wael KD, Buschop H, Heering HA, Smet LD, Beeumen JV, Devreese B, Adriaens A (2008) Electrochemical determination of hydrogen peroxide using rhodobacter capsulatus cytochrome c peroxidase at a gold electrode. Microchim Acta 162:65

    Article  Google Scholar 

  9. Zhong TS, Qu YX, Huang SS, Li FS (2007) Electrochemical studies of cytochrome c on gold electrodes with promotor of humic acid and 4-aminothiophenol. Microchim Acta 158:291

    Article  CAS  Google Scholar 

  10. Wu YH, Hu SS (2005) The fabrication of a colloidal gold-carbon nanotubes composite film on a gold electrode and its application for the determination of cytochrome c. Colloids Surf B 41:299

    Article  CAS  Google Scholar 

  11. Ding XQ, Yang M, Hu JB, Li QL, McDougall A (2007) Study of the adsorption of cytochrome c on a gold nanoparticle-modified gold electrode by using cyclic voltammetry, electrochemical impedance spectroscopy and chronopotentiometry. Microchim Acta 158:65

    Article  CAS  Google Scholar 

  12. Tan SN, Hua L (2001) Amperometric detection of cytochrome c by capillary electrophoresis at a sol-gel carbon composite electrode. Anal Chim Acta 450:263

    Article  CAS  Google Scholar 

  13. Picklo MJ, Zhang J, Nguyen VQ, Graham DG, Montine TJ (1999) High-pressure liquid chromatography quantitation of cytochrome c using 393 nm detection. Anal Biochem 276:166

    Article  CAS  Google Scholar 

  14. Ma Y, Bai HX, Yang C, Yang XR (2005) A sensitive method for the detection of proteins by high-efficiency fluorescence quenching. Analyst 130:283

    Article  CAS  Google Scholar 

  15. Michalet X, Pinaud FF, Bentolila LA, Tsay JM, Doose S, Li JJ, Sundaresan G, Wu AM, Gambhir SS, Weiss S (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538

    Article  CAS  Google Scholar 

  16. Bruchea M Jr, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013

    Article  Google Scholar 

  17. Wu XY, Liu HJ, Liu JQ, Haley KN, Treadway JA, Larson JP, Ge NF, Peale F, Bruchez MP (2003) Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat Biotechnol 21:41

    Article  CAS  Google Scholar 

  18. Jaiswal JK, Mattoussi H, Mauro JM, Simon SM (2003) Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat Biotechnol. 21:47

    Article  CAS  Google Scholar 

  19. Parak WJ, Gerion D, Zanchet D, Woerz AS, Pellegrino T, Michael C, Williams SC, Seitz M, Bruehl RE, Bryant Z, Bustamante C, Bertozzi CR, Alivisatos AP (2002) Conjugation of DNA to silanized colloidal semiconductor nanocrystalline quantum dots. Chem Mater 14:2113

    Article  CAS  Google Scholar 

  20. Fu AH, Micheel CM, Cha J, Chang H, Yang H, Alivisatos AP (2004) Discrete nanostructures of quantum dots/Au with DNA. J Am Chem Soc 126:10832

    Article  CAS  Google Scholar 

  21. Jin WJ, Costa-Fern´andez JM, Pereiro R, Sanz-Medel A (2004) Surface-modified CdSe quantum dots as luminescent probes for cyanide determination. Anal Chim Acta 522:1

    Article  CAS  Google Scholar 

  22. Liu MM, Xu L, Cheng WQ, Zeng Y, Yan ZY (2008) Surface-modified CdS quantum dots as luminescent probes for sulfadiazine determination. Spectrochim Acta Part A. doi 10.1016/j.saa.2007.10.040

  23. Wu HM, Liang JG, Han HY (2008) A novel method for the determination of Pb2+ based on the quenching of the fluorescence of CdTe quantum dots. Microchim Acta 161:81

    Article  CAS  Google Scholar 

  24. Gattás-Asfura KM, Leblanc RM (2003) Peptide-coated CdS quantum dots for the optical detection of copper (II) and silver (I). Chem Commun 2684. doi 10.1039/b308991f

  25. Xia YS, Zhu CQ (2008) Interaction of CdTe nanocrystals with thiol-containing amino acids at different pH: a fluorimetric study. Microchim Acta. doi 10.1007/s00604-008-0025-2

  26. Qian HF, Dong CQ, Weng JF, Ren JC (2006) Facile one-pot synthesis of luminescent, water-soluble, and biocompatible glutathione-coated CdTe nanocrystals. Small 2:747

    Article  CAS  Google Scholar 

  27. Chen B, Zhong P (2005) A new determining method of copper (II) ions at ng ml−1 levels based on quenching of the water-soluble nanocrystals fluorescence. Anal Bioanal Chem 381:986

    Article  Google Scholar 

  28. Gaponik N, Talapin DV, Rogach AL, EychmMller A, Weller H (2002) Efficient phase transfer of luminescent thiol-capped nanocrystals: From water to nonpolar organic solvents. Nano Lett 2:803

    Article  CAS  Google Scholar 

  29. Fan CH, Plaxco KW, Heeger AJ (2002) High-efficiency fluorescence quenching of conjugated polymers by proteins. J Am Chem Soc 124:5642

    Article  CAS  Google Scholar 

  30. Lakowicz JR (1999) Principles of fluorescence spectroscopy. Kluwer Academic/Plenum Publishers, New York

    Google Scholar 

  31. Klimov VI, McBranch DW, Leatherdale CA, Bawendi MG (1999) Electron and hole relaxation pathways in semiconductor quantum dots. Phys Rev B 60:13740

    Article  CAS  Google Scholar 

  32. Li QF, Liu SH, Zhang HY, Chen XG, Hu ZD (2001) Microdetermination of proteins by enhanced resonance light scattering spectroscopy of m-acetylchlorophosphonazo. Anal Lett 34:1133

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 20875003) and the Natural Science Foundation of Anhui Province (No. 070416239).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changqing Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cao, M., Cao, C., Liu, M. et al. Selective fluorometry of cytochrome c using glutathione-capped CdTe quantum dots in weakly basic medium. Microchim Acta 165, 341–346 (2009). https://doi.org/10.1007/s00604-009-0140-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-009-0140-8

Keywords

Navigation