Microchimica Acta

, Volume 163, Issue 1–2, pp 11–21 | Cite as

Amperometric electronic tongue for food analysis

  • Matteo Scampicchio
  • Davide Ballabio
  • Alessandra Arecchi
  • Stella M. Cosio
  • Saverio Mannino
Review

Abstract.

This review covers electronic tongues based on amperometric sensors and applied in food analysis. A brief overview of the development of sensors is included and this is illustrated by descriptions of different types of amperometric sensors used in electronic tongues. Analysis of multivariate data is also an essential part of any electronic tongue. Pattern recognition techniques are described, with a particular emphasis to the most advanced methods, such as artificial neural network and genetic algorithms. Finally, uses of the electronic tongue in model analyses and in food, beverage and water monitoring applications are also discussed.

Keywords: Electronic tongue; amperometric detection; food analysis; sensor array; pattern recognition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hänig, D P 1901Zur psychophysik des geschmackssinnesPhilosophische Studien17576Google Scholar
  2. Lindemann, B 1999Receptor seeks ligand: on the way to cloning the molecular receptors for sweet and bitter tasteNature Medicine5381CrossRefGoogle Scholar
  3. James, D, Scott, S M, Ali, Z, O’Hare, W T 2005Chemical sensors for electronic nose systemsMicrochim Acta1491CrossRefGoogle Scholar
  4. Wright, A T, Anslyn, E V 2006Differential receptor arrays and assays for solution-based molecular recognitionChem Soc Rev3514CrossRefGoogle Scholar
  5. Bard, A J, Faulkner, L R 2001Electrochemical methods: fundamentals and applicationsJohn Wiley & Sons IncNew YorkGoogle Scholar
  6. Kissinger, P T, Heineman, W R 1984Laboratory techniques in electroanalytical chemistryMarcel Dekker IncNew YorkGoogle Scholar
  7. Wang J (2000) Analytical electrochemistry. Wiley, VCHGoogle Scholar
  8. Manz, A, Graber, N, Widmer, H M 1990Miniaturized total chemical-analysis systems – a novel concept for chemical sensingSens Actuators B1244CrossRefGoogle Scholar
  9. Auroux, P A, Iossifidis, D, Reyes, D R, Manz, A 2002Micro total analysis systems. 2. Analytical standard operations and applicationsAnal Chem742637CrossRefGoogle Scholar
  10. Vilkner, T, Janasek, D, Manz, A 2004Micro total analysis systems. Recent developmentsAnal Chem763373CrossRefGoogle Scholar
  11. Liu, Y, Garcia, C D, Henry, C S 2003Recent progress in the development of µ-TAS for clinical analysisAnalyst1281002CrossRefGoogle Scholar
  12. Dittrich, P S, Tachikawa, K, Manz, A 2006Micro total analysis systems. Latest advancements and trendsAnal Chem783887CrossRefGoogle Scholar
  13. Martin, R S, Lunte, S M, Lacher, N A, Garrison, K E 2001Microchip capillary electrophoresis/electrochemistryElectrophoresis222526CrossRefGoogle Scholar
  14. Fischer, D J, Frankenfeld, C N, Lunte, S M, Vandaveer, W R, Pasas-Farmer, S A 2004Recent developments in electrochemical detection for microchip capillary electrophoresisElectrophoresis253528CrossRefGoogle Scholar
  15. Martin, R S, Lunte, S M, Vandaveer, W R, Pasas-Farmer, S A 2002Recent developments in amperometric detection for microchip capillary electrophoresisElectrophoresis233667CrossRefGoogle Scholar
  16. Wang, J 2002Electrochemical detection for microscale analytical systems: a reviewTalanta56223CrossRefGoogle Scholar
  17. Scampicchio, M, Mannino, S, Zima, J, Wang, J 2005Chemometrics on microchips: towards the classification of winesElectroanalysis171215CrossRefGoogle Scholar
  18. Bakker, E, Qin, Y 2006Electrochemical sensorsAnal Chem783965CrossRefGoogle Scholar
  19. Buratti, S, Ballabio, D, Benedetti, S, Cosio, M S 2007Prediction of Italian red wine sensorial descriptors from electronic nose, electronic tongue and spectrophotometric measurements by means of Genetic Algorithm regression modelsFood Chem100211CrossRefGoogle Scholar
  20. Winquist, F, Krantz-Rulcker, C, Wide, P, Lundstrom, I 1998Monitoring of freshness of milk by an electronic tongue on the basis of voltammetryMeas Sci Technol91937CrossRefGoogle Scholar
  21. Winquist, F, Holmin, S, Krantz-Rulcker, C, Wide, P, Lundstrom, I 2000A hybrid electronic tongueAnal Chim Acta406147CrossRefGoogle Scholar
  22. Collier, W A, Baird, D B, Park-Ng, Z A, More, N, Hart, A L 2003Discrimination among milks and cultured dairy products using screen-printed electrochemical arrays and an electronic noseSens Actuators B92232CrossRefGoogle Scholar
  23. Winquist, F, Bjorklund, R, Krantz-Rulcker, C, Lundstrom, I, Ostergren, K, Skoglund, T 2005An electronic tongue in the dairy industrySens Actuators B111299CrossRefGoogle Scholar
  24. Holmin, S, Krantz-Rulcker, C, Lundstrom, I, Winquist, F 2001Drift correction of electronic tongue responsesMeas Sci Technol121348CrossRefGoogle Scholar
  25. Holmin, S, Bjorefors, F, Eriksson, M, Krantz-Rulcker, C, Winquist, F 2002Investigation of electrode materials as sensors in a voltammetric electronic tongueElectroanalysis14839CrossRefGoogle Scholar
  26. Gutes, A, Ibanez, A, Cespedes, F, Alegret, S, del Valle, M 2005Simultaneous determination of phenolic compounds by means of an automated voltammetric “electronic tongue”Anal Bioanal Chem382471CrossRefGoogle Scholar
  27. Buratti, S, Benedetti, S, Scampicchio, M, Pangerod, E C 2004Characterization and classification of Italian Barbera wines by using an electronic nose and an amperometric electronic tongueAnal Chim Acta525133CrossRefGoogle Scholar
  28. Ivarsson, P, Holmin, S, Hojer, N E, Krantz-Rulcker, C, Winquist, F 2001Discrimination of tea by means of a voltammetric electronic tongue and different applied waveformsSens Actuators B76449CrossRefGoogle Scholar
  29. Ivarsson, P, Kikkawa, Y, Winquist, F, Krantz-Rulcker, C, Hojer, N E, Hayashi, K, Toko, K, Lundstrom, I 2001Comparison of a voltammetric electronic tongue and a lipid membrane taste sensorAnal Chim Acta44959CrossRefGoogle Scholar
  30. Trojanowicz, M 2003Application of conducting polymers in chemical analysisMicrochim Acta14375CrossRefGoogle Scholar
  31. Nguyen, T A, Kokot, S, Ongarato, D M, Wallace, G G 1999The use of chronoamperometry and chemometrics for optimization of conducting polymer sensor arraysElectroanalysis111327CrossRefGoogle Scholar
  32. Apetrei, C, Rodriguez-Mendez, M L, Parra, V, Gutierrez, F, De Saja, J A 2004Array of voltammetric sensors for the discrimination of bitter solutionsSens Actuators B103145CrossRefGoogle Scholar
  33. Arrieta, A A, Apetrei, C, Rodriguez-Mendez, M L, De Saja, J A 2004Voltammetric sensor array based on conducting polymer-modified electrodes for the discrimination of liquidsElectrochim Acta494543CrossRefGoogle Scholar
  34. Parra, V, Arrieta, A A, Fernandez-Escudero, J A, Garcia, H, Apetrei, C, Rodriguez-Mendez, M L, De Saja, J A 2006E-tongue based on a hybrid array of voltammetric sensors based on phthalocyanines, perylene derivatives and conducting polymers: discrimination capability towards red wines elaborated with different varieties of grapesSens Actuators B11554CrossRefGoogle Scholar
  35. Arrieta, A, Rodriguez-Mendez, M L, De Saja, J A 2003Langmuir-Blodgett film and carbon paste electrodes based on phthalocyanines as sensing units for tasteSens Actuators B95357CrossRefGoogle Scholar
  36. Casillia, S, De Luca, M, Apetrei, C, Parra, V, Arrieta, A A, Valli, L, Jiang, J Z, Rodriguez-Mendez, M L, De Saja, J A 2005Langmuir-Blodgett and Langmuir-Schaefer films of homoleptic and heteroleptic phthalocyanine complexes as voltammetric sensors: applications to the study of antioxidantsAppl Surf Sci246304CrossRefGoogle Scholar
  37. Parra, V, Hernando, T, Rodriguez-Mendez, M L, De Saja, J A 2004Electrochemical sensor array made from bisphthalocyanine modified carbon paste electrodes for discrimination of red winesElectrochim Acta495177CrossRefGoogle Scholar
  38. Parra, V, Arrieta, A A, Fernandez-Escudero, J A, Iniguez, M, De Saja, J A, Rodriguez-Mendez, M L 2006Monitoring of the ageing of red wines in oak barrels by means of an hybrid electronic tongueAnal Chim Acta563229CrossRefGoogle Scholar
  39. Parra, V, Arrieta, A A, Fernandez-Escudero, J A, Rodriguez-Mendez, M L, De Saja, J A 2006Electronic tongue based on chemically modified electrodes and voltammetry for the detection of adulterations in winesSens Actuators B118448CrossRefGoogle Scholar
  40. Prodromidis, M I, Karayannis, M I 1994Enzyme based amperometric biosensors for food analysisElectroanalysis14241CrossRefGoogle Scholar
  41. Guilbault G G (1994) Food Biosensors Analysis. Marcel DekkerGoogle Scholar
  42. Pauliukaite, R, Zhylyak, G, Citterio, D, Spichiger-Keller, U E 2006L-glutamate biosensor for estimation of the taste of tomato specimensAnal Bioanal Chem386220CrossRefGoogle Scholar
  43. Gutes, A, Cespedes, F, Alegret, S, del Valle, A 2005Determination of phenolic compounds by a polyphenol oxidase amperometric biosensor and artificial neural network analysisBiosens Bioelectron201668CrossRefGoogle Scholar
  44. Busch, J L H C, Hrncirik, K, Bulukin, E, Boucon, C, Mascini, M 2006Biosensor measurements of polar phenolics for the assessment of the bitterness and pungency of virgin olive oilJ Agric Food Chem544371CrossRefGoogle Scholar
  45. Gutes, A, Ibanez, A B, del Valle, M, Cespedes, F 2006Automated SIA e-tongue employing a voltammetric biosensor array for the simultaneous determination of glucose and ascorbic acidElectroanalysis1882CrossRefGoogle Scholar
  46. Tonning, E, Sapelnikova, S, Christensen, J, Carlsson, C, Winther-Nielsen, M, Dock, E, Solna, R, Skladal, P, Norgaard, L, Ruzgas, T, Emneus, J 2005Chemometric exploration of an amperometric biosensor array for fast determination of wastewater qualityBiosens Bioelectron21608CrossRefGoogle Scholar
  47. Huang, X J, Choi, Y K 2007Chemical sensors based on nanostructured materialsSens Actuators B122659CrossRefGoogle Scholar
  48. Malhotra, B D, Chaubey, A, Singh, S P 2006Prospects of conducting polymers in biosensorsAnal Chim Acta57859CrossRefGoogle Scholar
  49. Willner, I, Katz, E 2006Controlling chemical reactivity at solid-solution interfaces by means of hydrophobic magnetic nanoparticlesLangmuir221409CrossRefGoogle Scholar
  50. Menon, V P, Martin, C R 1995Fabrication and evaluation of nanoelectrode ensemblesAnal Chem671920CrossRefGoogle Scholar
  51. Wanekaya, A K, Chen, W, Myung, N V, Mulchandani, A 2006Nanowire-based electrochemical biosensorsElectroanalysis18533CrossRefGoogle Scholar
  52. Wang, J 2005Carbon-nanotube based electrochemical biosensors: a reviewElectroanalysis177CrossRefGoogle Scholar
  53. Greiner, A, Wendorff, J H 2007Electrospinning: a fascinating method for the preparation of ultrathin fibersAngew Chem Int Ed465670CrossRefGoogle Scholar
  54. Li, D, Xia, Y N 2004Electrospinning of nanofibers: reinventing the wheel?Advanced Materials161151CrossRefGoogle Scholar
  55. Wang, J 2005Nanomaterial-based electrochemical biosensorsAnalyst130421CrossRefGoogle Scholar
  56. Pravdova, V, Pravda, M, Guilbault, G G 2002Role of chemometrics for electrochemical sensorsAnal Lett352389CrossRefGoogle Scholar
  57. Richards, E, Bessant, C, Saini, S 2002Multivariate data analysis in electroanalytical chemistryElectroanalysis141533CrossRefGoogle Scholar
  58. Scott, S M, James, D, Ali, Z 2006Data analysis for electronic nose systemsMicrochim Acta156183CrossRefGoogle Scholar
  59. Artursson, T, Holmberg, M 2002Wavelet transform of electronic tongue dataSens Actuators B87379CrossRefGoogle Scholar
  60. Artursson, T, Spangeus, P, Holmberg, M 2002Variable reduction on electronic tongue dataAnal Chim Acta452255CrossRefGoogle Scholar
  61. Holmin, S, Spangeus, P, Krantz-Rulcker, C, Winquist, F 2001Compression of electronic tongue data based on voltammetry – a comparative studySens Actuators B76455CrossRefGoogle Scholar
  62. Jackson, J E 1991A user’s guide to principal componentsWileyNew YorkGoogle Scholar
  63. Joliffe, I T 1986Principal component analysisSpringer-VerlagNew YorkGoogle Scholar
  64. Wold, S, Esbensen, K H, Geladi, P 1987Principal component analysisChemom Intell Lab Syst237CrossRefGoogle Scholar
  65. Apetrei, C, Rodriguez-Mendez, M L, De Saja, J A 2005Modified carbon paste electrodes for discrimination of vegetable oilsSens Actuators B111403CrossRefGoogle Scholar
  66. Auger, J, Arnault, I, Legin, A, Rudnitskaya, A, Seleznev, B, Sparfel, G, Dore, C 2005Comparison of gas chromatography-mass spectrometry and electronic tongue analysis for the classification of onions and shallotsInt J Environ Anal Chem85971CrossRefGoogle Scholar
  67. Wu, J, Liu, J, Fu, M, Li, G, Lou, Z G 2005Classification of Chinese yellow wines by chemometric analysis of cyclic voltammogram of copper electrodesSensors5529CrossRefGoogle Scholar
  68. Schreyer, S K, Mikkelsen, S R 2000Chemometric analysis of square wave voltammograms for classification and quantitation of untreated beverage samplesSens Actuators B71147CrossRefGoogle Scholar
  69. Soderstrom, C, Boren, H, Winquist, F, Krantz-Rulcker, C 2003Use of an electronic tongue to analyze mold growth in liquid mediaInt J Food Microbiol83253CrossRefGoogle Scholar
  70. Di Natale, C, Paolesse, R, Macagnano, A, Mantini, A, D Amico, A, Ubigli, M, Legin, A, Lvova, L, Rudnitskaya, A, Vlasov, Y 2000Application of a combined artificial olfaction and taste system to the quantification of relevant compounds in red wineSens Actuators B69342CrossRefGoogle Scholar
  71. Scampicchio, M, Benedetti, S, Brunetti, B, Mannino, S 2006Amperometric electronic tongue for the evaluation of the tea astringencyElectroanalysis181643CrossRefGoogle Scholar
  72. Frank, I E, Friedman, J H 1993A statistical view of some chemometrics regression toolsTechnometrics35109CrossRefGoogle Scholar
  73. Martens, H, Naes, T 1989Multivariate calibrationWiley & SonsChichesterGoogle Scholar
  74. Wold, H 1966Estimation of principal component analysis and related models by iterative least squaresAcademic PressNew York391Google Scholar
  75. Johnson, H, Karlsson, O, Winqvist, F, Krantz-Rulcker, C, Ekedahl, L G 2003Predicting microbial growth in pulp using an electronic tongueNordic Pulp Paper Res J18134CrossRefGoogle Scholar
  76. Barker, M, Rayens, W 2003Partial least squares for discriminationJ Chemometr17166CrossRefGoogle Scholar
  77. McLachlan, G 1992Discriminant analysis and statistical pattern recognitionWileyNew YorkGoogle Scholar
  78. Cosio, M S, Ballabio, D, Benedetti, S, Gigliotti, C 2007Evaluation of different storage conditions of extra virgin olive oils with an innovative recognition tool built by means of electronic nose and electronic tongueFood Chem101485CrossRefGoogle Scholar
  79. Zupan, J, Gasteiger, J 1999Neural network in chemistry and drug designVCHWeinheimGoogle Scholar
  80. Zupan, J 1994Introduction of artificial neural network (ANN) methods: what they are and how to use themActa Chimica Slovenica41327Google Scholar
  81. Tang, L, Zeng, G M, Shen, G L, Zhang, Y, Huang, G H, Li, J B 2006Simultaneous amperometric determination of lignin peroxidase and manganese peroxidase activities in compost bioremediation using artificial neural networksAnal Chim Acta579109CrossRefGoogle Scholar
  82. Cosio, M S, Ballabio, D, Benedetti, S, Gigliotti, C 2006Geographical origin and authentication of extra virgin olive oils by an electronic nose in combination with artificial neural networksAnal Chim Acta567202CrossRefGoogle Scholar
  83. Gutes, A, Calvo, D, Cespedes, F, del Valle, M 2007Automatic sequential injection analysis electronic tongue with integrated reference electrode for the determination of ascorbic acid, uric acid and paracetamolMicrochim Acta1571CrossRefGoogle Scholar
  84. Moreno-Baron, L, Cartas, R, Merkoci, A, Alegret, S, Gutierrez, J M, Leija, L, Hernandez, P R, Munoz, R, del Valle, M 2005Data compression for a voltammetric electronic tongue modelled with artificial neural networksAnal Lett382189CrossRefGoogle Scholar
  85. Moreno-Baron, L, Cartas, R, Merkoci, A, Alegret, S, del Valle, M, Leija, L, Hernandez, P R, Munoz, R 2006Application of the wavelet transform coupled with artificial neural networks for quantification purposes in a voltammetric electronic tongueSens Actuators B113487CrossRefGoogle Scholar
  86. Jenrich, R I 1977Stepwise discriminant analysisWileyNew YorkGoogle Scholar
  87. Goldberg D E (1989) Genetic algorithm in search, optimization and machine learning. Addison Wesley, ReadingGoogle Scholar
  88. Leardi, R, Boggia, R, Terrile, M 1992Genetic algorithms as a strategy for feature-selectionJ Chemom6267CrossRefGoogle Scholar
  89. Leardi, R 2001Genetic algorithms in chemometrics and chemistry: a reviewJ Chemom15559CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Matteo Scampicchio
    • 1
  • Davide Ballabio
    • 1
  • Alessandra Arecchi
    • 1
  • Stella M. Cosio
    • 1
  • Saverio Mannino
    • 1
  1. 1.Department of Food Science and MicrobiologyUniversity of MilanMilanItaly

Personalised recommendations