Skip to main content
Log in

A novel method for methimazole determination using CdSe quantum dots as fluorescence probes

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel method has been developed for methimazole analysis based on the quenching of fluorescence emission from CdSe quantum dots by methimazole. Under optimum conditions, the calibration graph was linear over the range of 50 nM to 5 μM (r 2 = 0.990). The limit of detection (S/N = 3) was 30 nM. The R.S.D. for ten determinations of 500 nM methimazole was 3.4%. The method was applied to determine methimazole in tablets and rat urine, and the results were satisfactory, i.e. consistent with those of gas chromatography–mass spectrometry. The possible cause of fluorescence quenching is due to the exchange of surface capping organic molecules of quantum dots induced by methimazole.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Eshghi H, Tayyari SF, Rezvani-Amin Z, Roohi H (2008) Methimazole-disulfide as an anti-thyroid drug metabolite catalyzed the highly regioselective conversion of epoxides to halohydrins with elemental halogens. Bull Korean Chem Soc 29:51

    Article  CAS  Google Scholar 

  2. Sułkowska A (2002) Interaction of drugs with bovine and human serum albumin. J Mol Struct 614:227

    Article  Google Scholar 

  3. Kasraee B, Hugin A, Tran C, Sorg O, Saurat JH (2004) Methimazole is an inhibitor of melanin synthesis in cultured B16 melanocytes. J Invest Dermatol 122:1338

    Article  Google Scholar 

  4. Kuśmierek K, Bald E (2007) Determination of methimazole in urine by liquid chromatography. Talanta 71:2121

    Article  CAS  Google Scholar 

  5. Wasch KD, Brabander HFB, Impens S, Vandewiele M, Courtheyn D (2001) Determination of mercaptobenzimidazol and other thyreostat residues in thyroid tissue and meat using high-performance liquid chromatography–mass spectrometry. J Chromatogr A 912:311

    Article  Google Scholar 

  6. Zakrzewski R (2008) Determination of methimazole in urine with the iodine-azide detection system following its separation by reversed-phase high-performance liquid chromatography. J Chromatogr B Anal Technol Biomed Life Sci 869:67

    Article  CAS  Google Scholar 

  7. Batjoens P, Brabander HFD, Wasch KD (1996) Rapid and high-performance analysis of thyreostatic drug residues in urine using gas chromatography–mass spectrometry. J Chromatogr A 750:127

    Article  CAS  Google Scholar 

  8. Aslanoglu M, Peker N (2003) Potentiometric and voltammetric determination of methimazole. J Pharm Biomed Anal 33:1143

    Article  CAS  Google Scholar 

  9. Shahrokhian S, Ghalkhani M (2008) Voltammetric determination of methimazole using a carbon paste electrode modified with a Schiff base complex of cobalt. Electroanalysis 20:1061

    Article  CAS  Google Scholar 

  10. Economou A, Tzanavaras PD, Notou M, Themelis DG (2004) Determination of methimazole and carbimazole by flow-injection with chemiluminescence detection based on the inhibition of the Cu(II)-catalysed luminol–hydrogen peroxide reaction. Anal Chim Acta 505:129

    Article  CAS  Google Scholar 

  11. Liu XL, Yuan H, Pang DW, Cai RX (2004) Resonance light scattering spectroscopy study of interaction between gold colloid and thiamazole and its analytical application. Spectrochim Acta Part A 60:385

    Article  CAS  Google Scholar 

  12. Spangler C, Schaeferling M, Wolfbeis OS (2008) Fluorescent probes for microdetermination of inorganic phosphates and biophosphates. Microchim Acta 161:1

    Article  CAS  Google Scholar 

  13. Sutherland AJ (2002) Quantum dots as luminescent probes in biological systems. Curr Opin Solid State Mater Sci 6:365

    Article  CAS  Google Scholar 

  14. Wu HM, Liang JG, Han HY (2008) A novel method for the determination of Pb2+ based on the quenching of the fluorescence of CdTe quantum dots. Microchim Acta 161:81

    Article  CAS  Google Scholar 

  15. Liang JG, Huang S, Zeng DY, He ZK, Ji XH, Ai XP, Yang HX (2006) CdSe quantum dots as luminescent probes for spironolactone determination. Talanta 69:126

    Article  CAS  Google Scholar 

  16. Wang YQ, Ye C, Zhu ZH, Hu YZ (2008) Cadmium telluride quantum dots as pH-sensitive probes for tiopronin determination. Anal Chim Acta 610:50

    Article  CAS  Google Scholar 

  17. Qu LH, Peng XG (2002) Control of photoluminescence of CdSe nanocrystals in growth. J Am Chem Soc 124:2049

    Article  CAS  Google Scholar 

  18. Skellern GG, Steer S (1981) The metabolism of [2–14C]methimazole in the rat. Xenobiotica. 11(9):627–34

    Article  CAS  Google Scholar 

  19. Liang JG, Zhang SS, Ai XP, Ji XH, He ZK (2005) The interaction between some diamines and CdSe quantum dots. Spectrochim Acta Part A 61:2974

    Article  CAS  Google Scholar 

  20. Yu WW, Qu LH, Guo WZ, Peng XG (2003) Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem Mater 15:2854

    Article  CAS  Google Scholar 

  21. Cao QE, Zhao YK, Yao XJ, Hu ZD, Xu QH (2000) The synthesis and application of 1-(o-nitrophenyl)-3-(2-thiazolyl)triazene for the determination of palladium(II) by the resonance enhanced Rayleigh light-scattering technique. Spectrochim Acta Part A 56:1319

    Article  Google Scholar 

  22. Landi BJ, Evans CM, Worman JJ, Castro SL, Bailey SG, Raffaelle RP (2006) Noncovalent attachment of CdSe quantum dots to single wall carbon nanotubes. Mater Lett 60:3502

    Article  CAS  Google Scholar 

  23. Dong F, Han HY, Liang JG, Lu DL (2008) Study on the interaction between 2-mercaptoethanol, dimercaprol and CdSe quantum dots. Luminescence 23:321

    Article  CAS  Google Scholar 

  24. Smith E, Dent G (2005) Modern Raman spectroscopy—a practical approach. Wiley, New York

    Google Scholar 

  25. Loo BH, Tse Y, Parsons K, Adelman C, El-Hage A, Lee YG (2006) Surface-enhanced Raman spectroscopy of imidazole adsorbed on electrode and colloidal surfaces of Cu, Ag, and Au. J Raman Spectrosc 37:299

    Article  CAS  Google Scholar 

  26. Cao PG, Gu RA, Tian ZQ (2003) Surface-enhanced Raman spectroscopy studies on the interaction of imidazole with a silver electrode in acetonitrile solution. J Phys Chem B 107:769

    Article  CAS  Google Scholar 

  27. Krishnakumar V, Xavier RJ (2004) FT Raman and FT-IR spectral studies of 3-mercapto-1, 2, 4-triazole. Spectrochim Acta Part A 60:709

    Article  CAS  Google Scholar 

  28. Sharmaa SN, Sharmaa H, Singh G, Shivaprasad SM (2008) Studies of interaction of amines with TOPO/TOP capped CdSe quantum dots: Role of crystallite size and oxidation potential. Mater Chem Phys 110:471

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support for this research provided by New Century Excellent Talents in Chinese Ministry of Education (NCET-05-0668), the National Natural Science Foundation of China (20675034), Program for academic pacesetter of Wuhan (200851430484).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heyou Han.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 215 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, F., Hu, K., Han, H. et al. A novel method for methimazole determination using CdSe quantum dots as fluorescence probes. Microchim Acta 165, 195–201 (2009). https://doi.org/10.1007/s00604-008-0120-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-008-0120-4

Keywords

Navigation