Skip to main content
Log in

Oxygen plasma-treated gold nanoparticle-based field-effect devices as transducer structures for bio-chemical sensing

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

EIS (electrolyte-insulator-semiconductor) sensors based on the functionalization of uncoated gold nanoparticles supported on a Si/SiO2 structure are presented. Oxygen plasma etching at moderate power (<200 W) provides a convenient and efficient way to remove organic capping agents from the gold nanoparticles without significant damage. Higher power intensities destroy the linkage between the SiO2 and the gold nanoparticles, and some of the gold nanoparticles are removed from the surface. The flat-band potential shift, i.e. the pH dependence of the gold-coated EIS sensors is similar (33 mV/pH) to the uncoated EIS pH-sensor. Lead, penicillin and glucose sensors were prepared by immobilization of β-cyclodextrin, penicillinase and glucose oxidase by various immobilization techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R (1994) Synthesis of thiol-derivatised gold nanoparticles in a 2-phase liquid–liquid system. J Chem Soc Chem Commun 7:801–802

    Article  Google Scholar 

  2. Guoa S, Wang E (2007) Synthesis and electrochemical applications of gold nanoparticles. Anal Chim Acta 598:181–192

    Article  Google Scholar 

  3. Kharitonov AB, Shipway AN, Katz E, Willner I (1999) Gold-nanoparticle/bis-bipyridinium cyclophane-functionalized ion-sensitive field-effect transistors: novel assemblies for the sensing of neurotransmitters. Anal Chem 18:255–260

    CAS  Google Scholar 

  4. Katz E, Willner I (2003) Probing biomolecular interactions at conductive and semiconductive surfaces by impedance spectroscopy: routes to impedimetric immunosensors, DNA-sensors, and enzyme biosensors. Electroanalysis 15:913–947

    Article  CAS  Google Scholar 

  5. Kielbassa S, Habich A, Schnaidt J, Bansmann J, Weigl F, Boyen HG, Ziemann P, Behm RJ (2006) On the morphology and stability of Au nanoparticles on TiO2(110) prepared from micelle-stabilized precursors. Langmuir 22:7873–7880

    Article  CAS  Google Scholar 

  6. Raiber K, Terfort A, Benndorf C, Krings N, Strehblow HH (2005) Removal of self-assembled monolayers of alkanethiolates on gold by plasma cleaning. Surf Sci 595:56–63

    Article  CAS  Google Scholar 

  7. Hesse E, Creighton JA (1999) Investigation by surface-enhanced Raman spectroscopy of the effect of oxygen and hydrogen plasmas on adsorbate-covered gold and silver island films. Langmuir 15:3545–3550

    Article  CAS  Google Scholar 

  8. Gun J, Schöning MJ, Abouzar MH, Poghossian A, Katz E (2008) Field-effect nanoparticle-based glucose sensor on a chip: amplification effect of co-immobilized redox species. Electroanalysis (in press)

  9. Brust M, Bethell D, Schiffrin DJ, Kiely CJ (1995) Novel gold-dithiol nano-networks with nonmetallic electronic-properties. Adv Mater 7:795–803

    Article  CAS  Google Scholar 

  10. Fishelson N, Shkrob I, Lev O, Gun J, Modestov AD (2001) Studies on charge transport in self-assembled gold dithiol films: conductivity, photoconductivity and Photoelectrochemical measurements. Langmuir 17:403–412

    Article  CAS  Google Scholar 

  11. Schmitt J, Machtle P, Eck D, Mohwald H (1999) Preparation and optical properties of colloidal gold monolayers. Langmuir 15:3256–3266

    Article  CAS  Google Scholar 

  12. Russell CP, Salek JS, Sikorski CT, Kumaravel G, Lin FT (1990) Cooperative binding by aggregated mono-6-(alky1amino)-β-cyclodextrins. J Am Chem Soc 112:3860–3868

    Article  Google Scholar 

  13. Thermo Scientific (2007) Tech Tip #2: attach a protein onto a gold surface. Available at http://www.Piercenet.com

  14. Tang DY, Xia BY, Zhang YQ (2008) Direct electrochemistry and electrocatalysis of hemoglobin in a multilayer {nanogold/PDDA}(n) inorganic-organic hybrid film. Microchim Acta 160:367–374

    Article  CAS  Google Scholar 

  15. Wuelfing WP, Green SJ, Pietron JJ, Cliffel DE, Murray RW (2000) Electronic Conductivity of solid-state, mixed-valent, monolayer-protected Au clusters. J Am Chem Soc 122:11465–11472

    Article  CAS  Google Scholar 

  16. Poghossian A, Abouzar MH, Sakkari M, Kassab T, Han Y, Ingebrandt S, Offenhäusser A, Schöning MJ (2006) Field-effect sensors for monitoring the layer by-layer adsorption of charged macromolecules. Sens Actuators B Chem 118:163–170

    Article  Google Scholar 

  17. Cane C, Gracia I, Merlos A (1997) Microtechnologies for pH ISFET chemical sensors. Microelectron J 28:389–405

    Article  CAS  Google Scholar 

  18. Schöning MJ, Poghossian A (2006) BioFEDs (Field-effect devices): state-of-the-art and new directions. Electroanalysis 18:1893–1900

    Article  Google Scholar 

  19. Schöning MJ, Tsarouchas D, Schaub A, Beckers L, Zander W, Schubert J, Kordos P, Lüth H (1996) A highly long-term stable silicon-based pH sensor using pulsed laser deposition technique. Sens Actuators B Chem 35:228–233

    Article  Google Scholar 

  20. Poghossian A, Schöning MJ (2007) In: Grimes CA, Dickey EC, Pishko MV (eds) Encyclopedia of sensors, chapter 24, vol 9. American Scientific, Stevenson Ranch, USA, pp 463–534

    Google Scholar 

  21. Poghossian A, Schöning MJ (2008) In: Marks RS, Cullen DC, Karube I, Lowe CR, Weetall HH (eds) Handbook of biosensors and biochips, chapter 24. Wiley, Weinheim, Germany, pp 1–17

    Google Scholar 

  22. Schöning MJ, Brinkmann D, Rolka D, Demuth C, Poghossian A (2005) CIP (cleaning-in-place) suitable “non-glass” pH sensor based on a Ta2O5-gate EIS structure. Sens Actuators B Chem 111–112:423–429

    Article  Google Scholar 

  23. Thust M, Schöning MJ, Schroth P, Malkoc Ü, Dicker CI, Steffen A, Kordos P, Lüth H (1999) Enzyme immobilisation on planar and porous silicon substrates for biosensor applications. J Mol Catal B Enzym 7:77–83

    Article  CAS  Google Scholar 

  24. Liao CW, Chou JC, Sun TP, Hsiung SK, Hsieh JH (2007) Preliminary investigations on a glucose biosensor based on the potentiometric principle. Sens Actuators B Chem 21:720–726

    Article  Google Scholar 

  25. Yao K, Zhu YH, Wang P, Yang XL, Cheng PZ, Lu H (2007) ENFET glucose biosensor produced with mesoporous silica microspheres. Mater Sci Eng C 27:736–740

    Article  CAS  Google Scholar 

  26. Xiao Y, Patolsky F, Katz E, Hainfeld JF, Willner I (2003) “Plugging into enzymes”: nanowiring of redox enzymes by a gold nanoparticle. Science 299:1877–1881

    Article  CAS  Google Scholar 

  27. Cavaliere-Jaricot S, Darbandi M, Kucur E, Nann T (2008) Silica coated quantum dots: a new tool for electrochemical and optical glucose detection. Mikrochim Acta 160:375–383

    CAS  Google Scholar 

  28. Bharathi S, Lev O (1998) Sol-gel-derived nanocrystalline gold-silicate composite biosensor. Anal Commun 35:29–31

    Article  CAS  Google Scholar 

  29. Liu Y, Hu LM, Yang SQ (2008) Amplification of bioelectrocatalytic signalling based on silver nanoparticles and DNA-derived horseradish peroxidase biosensors. Mikrochim Acta 160:357

    CAS  Google Scholar 

  30. Zhao J, Yu JJ, Wang F, Hu SS (2006) Fabrication of gold nanoparticle-dihexadecyl hydrogen phosphate film on a glassy carbon electrode. Mikrochim Acta 156:277–282

    CAS  Google Scholar 

  31. Parke SA, Birch GG, MacDougall DB, Stevens DA (1997) Tastes, structure and solution properties of D-glucono-1,5-lactone. Chem Senses 22:53–65

    Article  CAS  Google Scholar 

  32. Katz EY (1990) A chemically modified electrode capable of a spontaneous immobilization of amino-compounds due to its functionalization with succinimidyl groups. J Electroanal Chem 291:257–264

    Article  Google Scholar 

  33. Bergmeyer HU, Gawehn K, Grassl M (1974) In: Bergmeyer HU (ed) Methods of enzymatic analysis, vol 1, 2nd edn. Academic, NY, USA, pp 457–458

    Google Scholar 

  34. Papariello GJ, Mukherji AK, Shearer CM (1973) Penicillin selective enzyme electrode. Anal Chem 45:790–792

    Article  CAS  Google Scholar 

  35. Caras S, Janata J (1980) Field-effect transistor sensitive to penicillin. Anal Chem 52:1935–1937

    Article  CAS  Google Scholar 

  36. Poghossian A, Thust M, Schroth P, Steffen A, Lüth H, Schöning MJ (2001) Penicillin detectionby means of silicon-based field-effect structures. Sens Mater 13:207–223

    CAS  Google Scholar 

  37. Poghossian A, Yoshinobu T, Simonis A, Ecken H, Lüth H, Schöning MJ (2001) Penicillin detection by means of field-effect based sensors: EnFET, capacitive EIS sensor or LAPS? Sens Actuators B Chem 78:237–242

    Article  Google Scholar 

  38. Poghossian A, Schöning MJ, Schroth P, Simonis A, Lüth H (2001) An ISFET-based penicillin sensor with high sensitivity, low detection limit and long lifetime. Sens Actuators B Chem 76:519–526

    Article  Google Scholar 

  39. Poghossian A, Thust M, Schöning MJ, Müller-Veggian M, Kordos P, Lüth H (2000) Cross-sensitivity of a capacitive penicillin sensor combined with a diffusion barrier. Sens Actuators B Chem 68:260–265

    Article  Google Scholar 

  40. Wang J (1988) Electroanalytical techniques in clinical chemistry and laboratory medicine. Wiley-VCH, Weinheim, Germany

    Google Scholar 

  41. Thust M, Schöning MJ, Vetter J, Kordos P, Lüth H (1996) A long-term stable penicillin-sensitive potentiometric biosensor with enzyme immobilized by heterobifunctional crosslinking. Anal Chim Acta 323:115–121

    Article  CAS  Google Scholar 

  42. Szejtli J (1988) Cyclodextrine technology. Kluwer, Boston, USA

    Google Scholar 

  43. Li S, Purdy WC (1992) Cyclodextrins and their applications in analytical-chemistry. Chem Rev 92:1457–1470

    Article  CAS  Google Scholar 

  44. Lahiani-Skiba M, Coquard A, Bounoure F, Verite P, Arnaud P, Skiba M (2007) Mebendazole complexes with various cyclodextrins: preparation and physicochemical characterization. J Incl Phenom Macrocycl Chem 57:197–201

    Article  CAS  Google Scholar 

  45. Ben Ali M, Kalfat R, Sfihi H, Ben Ouada H, Chovelon JM, Jafferezic-Renault N (1998) Cyclodextrin-polymethylhydrosiloxane gel as sensitive membrane for heavy ion sensors. Mater Sci Eng C 6:53–58

    Article  Google Scholar 

  46. Ben Ali M, Kalfat R, Sfihi H, Ben Ouada H, Chovelon JM, Jafferezic-Renault N (2000) Sensitive cyclodextrin-polysiloxane gel membrane on EIS structure and ISFET for heavy metal ion detection. Sens Actuators B Chem 62:233–237

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the technical assistance of H.-P. Bochem and A. Besmehn for the surface characterization with HRSEM and XPS and to A. Voskevich for the very useful discussions. J. Gun thanks the Alexander von Humboldt Foundation for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ovadia Lev or Michael J. Schöning.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gun, J., Rizkov, D., Lev, O. et al. Oxygen plasma-treated gold nanoparticle-based field-effect devices as transducer structures for bio-chemical sensing. Microchim Acta 164, 395–404 (2009). https://doi.org/10.1007/s00604-008-0073-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-008-0073-7

Keywords

Navigation