Skip to main content

Advertisement

Log in

A reagentless nitrite biosensor based on direct electron transfer of hemoglobin on a room temperature ionic liquid/carbon nanotube-modified electrode

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A novel amperometric biosensor for nitrite was developed by immobilization of hemoglobin (Hb) and a room temperature ionic liquid, 1-ethyl-3-methyl imidazolium tetrafluoroborate (EMIT), on a multi-walled carbon nanotubes (MWNTs) modified electrode. Compared with Hb/MWNTs modified electrode, the Hb/RTILs/MWNTs modified electrode showed better electrochemical response, indicating that EMIT can promote direct electron transfer of Hb. A pair of well-defined, quasi-reversible redox peaks of Hb with a formal potential of −0.315 V was observed. The immobilized Hb exhibited remarkable electrocatalytic activity for the reduction of nitrite. The linear response range was from 4.0 × 10−6 to 3.2 × 10−4 M with a detection limit of 8.1 × 10−7 M at a signal-to-noise ratio of 3. The resulting biosensor has been successfully applied to the determination of nitrite in water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Koch VR, Nanjundiah C, Carlin RT (1994) US Patent 5,827,602

  2. Bonhote P, Dias AP, Armand M, Papageorgiou N, Kalyanasundaram K, Gratzel M (1996) Hydrophobic highly conductive ambient-temperature molten salts. Inorg Chem 35:1168

    Article  CAS  Google Scholar 

  3. Katayama Y, Dan S, Miura T, Kishi T (2001) Electrochemical behavior of silver in 1-ethyl-3-methylimidazolium tetrafluoroborate molten salt. J Eletrochem Soc 148:C102

    Article  CAS  Google Scholar 

  4. He P, Liu HT, Li ZY, Liu Y, Xu XD, Li JH (2004) Electrochemical deposition of silver in room temperature ionic liquids and its surface-enhanced Raman scattering effect. Langmuir 20:10260

    Article  CAS  Google Scholar 

  5. Mukhopadhyay I, Aravinda CLR, Borissov D, Freyland W (2005) Electrodeposition of Ti from TiCl4 in the ionic liquid l-methyl-3-butyl-imidazolium bis (trifluoro methyl sulfone) imide at room temperature: study on phase formation by in situ electrochemical scanning tunneling microscopy. Electrochim Acta 50:1275

    Article  CAS  Google Scholar 

  6. Yuyama K, Masuda G, Yoshida H, Sato T (2006) Ionic liquids containing the tetrafluoroborate anion have the best performance and stability for electric double layer capacitor applications. J Power Sources 162:1401

    Article  CAS  Google Scholar 

  7. McEwen AB, Ngo HL, LeCompte K, Goldman JL (1999) Electrochemical properties of imidazolium salt electrolytes for electrochemical capacitor applications. J Electrochem Soc 146:1687

    Article  CAS  Google Scholar 

  8. Lu W, Fadeev G, Qi B, Smela E, Mattes BR, Ding J, Spinks GM, Forsyth M (2002) Use of ionic liquids for p-conjugated polymer electrochemical devices. Science 297:983

    Article  CAS  Google Scholar 

  9. Zhou D, Spinks GM, Wallace GG, Tiyapiboonchaiya C, MacFarlane DR, FoSun M (2003) Solid state actuators based on polypyrrole and polymer-in-ionic liquid electrolytes. Electrochim Acta 48:2355

    Article  CAS  Google Scholar 

  10. Ricks-Laskoski HL, Snow AW (2006) Synthesis and electric field actuation of an ionic liquid polymer. J Am Chem Soc 128:12402

    Article  CAS  Google Scholar 

  11. Garcia B, Lavallee S, Perron G (2004) Room temperature molten salts as lithium battery electrolyte. Electrochim Acta 49:4583

    Article  CAS  Google Scholar 

  12. Goldman JL, McEween AB (1999) EMIIm and EMIBeti on aluminum anodic stability dependence on lithium salt and propylene carbonate. Electrochem Solid-State Lett 2:501

    Article  CAS  Google Scholar 

  13. Compton DL, Laszlo JA (2003) Loss of cytochrome c Fe (III)/Fe (II) redox couple in ionic liquids. J Electroanal Chem 533:187

    Article  Google Scholar 

  14. Ding SF, Xu MQ, Zhao GC, Wei XW (2007) Direct electrochemical response of myoglobin using a room temperature ionic liquid, 1-(2-hydroxyethyl)-3-methyl-imidazolium tetrafluoroborate, as supporting electrolyte. Electrochem Commun 9:216

    Article  CAS  Google Scholar 

  15. Lu XB, Zhang Q, Zhang L, Li JH (2006) Direct electron transfer of horseradish peroxidase and its biosensor based on chitosan and room temperature ionic liquid. Electrochem Commun 8:874

    Article  CAS  Google Scholar 

  16. López MŚ-P, Mecerreyes D, López-Cabarcos E, López-Ruiz B (2006) Amperometric glucose biosensor based on polymerized ionic liquid microparticles. Biosen Bioelectron 21:2320

    Article  Google Scholar 

  17. Mirvish SS (1995) Role of N-nitroso compounds (NOC) and N-nitrosation in etiology of gastric, esophageal, nasopharyngeal and bladder cancer and contribution to cancer of known exposures to NOC. Cancer Lett 93:17

    Article  CAS  Google Scholar 

  18. Momaghan JM, Cook K, Cara D (1997) Determination of nitrite and nitrate in human serum. J Chromatogr A 770:143

    Article  Google Scholar 

  19. He DY, Zhang ZJ, Huang Y, Hu YF (2007) Chemiluminescence microflow injection analysis system on a chip for the determination of nitrite in food. Food Chem 101:667

    Article  CAS  Google Scholar 

  20. Yang WW, Bai Y, Li YC, Sun CQ (2005) Amperometric nitrite sensor based on hemoglobin/colloidal gold nanoparticles immobilized on a glassy carbon electrode by a titania sol-gel film. Anal Bioanal Chem 382:44

    Article  CAS  Google Scholar 

  21. Dai ZH, Xu XX, Ju HX (2004) Direct electrochemistry and electrocatalysis of myoglobin immobilized on a hexagonal mesoporous silica matrix. Anal Biochem 332:23

    Article  CAS  Google Scholar 

  22. Hou PX, Bai S, Yang QH, Liu C, Cheng HM (2002) Multi-step purification of carbon nanotubes. Carbon 40:81

    Article  CAS  Google Scholar 

  23. Liu Y, Zou XQ, Dong SJ (2006) Electrochemical characteristics of facile prepared carbon nanotubes-ionic liquid gel modified microelectrode and application in bioelectrochemistry. Electrochem Commun 8:1429

    Article  CAS  Google Scholar 

  24. Fukushima T, Kosaka A, Ishimura Y, Yamamoto T, Takigawa T, Ishii N, Aida T (2003) Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes. Science 300:2072

    Article  CAS  Google Scholar 

  25. Zhao Q, Zhan D, Ma H, Zhang M, Zhao Y, Jing P, Zhu Z, Wan X, Shao Y, Zhuang Q (2005) Direct proteins electrochemistry based on ionic liquid mediated carbon nanotube modified glassy carbon electrode. Front Biosci 10:326

    Article  CAS  Google Scholar 

  26. Murray RW, Bard AJ (1984) Electroanalytical chemistry. Marcel Dekker, New York, p 191

    Google Scholar 

  27. Murray RW, Bard AJ (1984) Electroanalytical chemistry. Marcel Dekker, New York, p 53

    Google Scholar 

  28. Bard AJ, Faulkner LR (1980) Electrochemical method. Marcel Dekker, New York, p 121

    Google Scholar 

  29. Han X, Huang W, Jia J, Dong S, Wang E (2002) Direct electrochemistry of hemoglobin in egg/phosphatidylcholine films and its catalysis to H2O2. Biosen Bioelectron 17:741

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Professor T. Ohsaka of Tokyo Institute of Technology for providing RTIL, EMIT. This work was supported by the National Natural Science Foundation and Program for Innovative Research Team in Anhui Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Chao Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, W., Jin, HH. & Zhao, GC. A reagentless nitrite biosensor based on direct electron transfer of hemoglobin on a room temperature ionic liquid/carbon nanotube-modified electrode. Microchim Acta 164, 167–171 (2009). https://doi.org/10.1007/s00604-008-0053-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-008-0053-y

Keywords

Navigation