Skip to main content
Log in

Label-free amperometric immunosensor based on antibody immobilized on a positively charged gold nanoparticle/l-cysteine-modified gold electrode

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Positively charged gold nanoparticles prepared in organic solvents were used for the first time to fabricate a label-free amperometric immunosensor for rapid immunoanalysis. To construct the sensor, positively charged gold nanoparticles are adsorbed on the surface of a l-cysteine modified electrode by electrostatic interaction. Then, the positively charged gold nanoparticle film formed is utilized as a template to immobilize anti-h-IgG for subsequent immunoreaction. Excellent electrocatalytic oxidation of ascorbic acid at the immunosensor is observed, which is utilized for signal amplification. Thus, the amperometric immunosensor can be used for the determination of h-IgG in the absence of label. After immunoreaction, the immobilization of bulk immunocomplex over the surface of the electrode is expected to retard the flux of ascorbic acid to the surface of the electrode, which leads to a linear decrease in amperometric response over the range of 0.5–25 ng mL−1. Moreover, the mechanism for the electrocatalytical response of the immunosensor, the characteristics, and the optimal conditions for amperometric immunoanalysis of h-IgG are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Graighead HG (2000) Nanoelectromechanical systems. Science 290:1532

    Article  Google Scholar 

  2. Quake SR, Scherer A (2000) From micro- to nanofabrication with soft materials. Science 290:1536

    Article  CAS  Google Scholar 

  3. Jager EWH, Smela E, Inganǎs O (2000) Microfabricating conjugated polymer actuators. Science 290:1540

    Article  CAS  Google Scholar 

  4. Ressine A, Ekstrǒm S, Marko-varga G, Laurell T (2003) Macro-/nanoporous silicon as a support for high-performance protein microarrays. Anal Chem 75:6968

    Article  CAS  Google Scholar 

  5. Wang J, Liu GD, Munge B, Lin L, Zhu QY (2004) DNA-based amplified bioelectronic detection and coding of proteins. Angew Chem Int Ed 43:2158

    Article  CAS  Google Scholar 

  6. Rubianes MD, Rivas GA (2003) Carbon nanotubes paste electrode. Electrochem Commun 5:689

    Article  CAS  Google Scholar 

  7. Xu SY, Han XZ (2004) A novel method to construct a third-generation biosensor: self-assembling gold nanoparticles on thiol-functionalized poly(styrene-co-acrylic acid) nanospheres. Biosens Bioelectron 19:1117

    Article  CAS  Google Scholar 

  8. Zhang L, Jiang X, Wang E, Dong SJ (2005) Attachment of gold nanoparticles to glassy carbon electrode and its application for the direct electrochemistry and electrocatalytic behavior of hemoglobin. Bio Bioelectron 21:337

    Article  CAS  Google Scholar 

  9. He PL, Hu NF (2004) Electrocatalytic properties of heme proteins in layer-by-layer films assembled with SiO2. Nanoparticles Electroanal 16:1122

    CAS  Google Scholar 

  10. Zhang Y, He PL, Hu NF (2004) Horseradish peroxidase immobilized in TiO2 nanoparticle films on pyrolytic graphite electrodes: direct electrochemistry and bioelectrocatalysis. Electrochim Acta 49:1981

    Article  CAS  Google Scholar 

  11. Wang J, Liu GD, Rasul JM (2004) Ultrasensitive electrical biosensing of proteins and DNA: carbon-nanotube derived amplification of the recognition and transduction events. J Am Chem Soc 126:3010

    Article  CAS  Google Scholar 

  12. Zhang LY, Yuan R, Chai YQ, Li XL (2007) Investigation of the electrochemical and electrocatalytic behavior of positively charged gold nanoparticle and l-cysteine film on an Au electrode. Anal Chim Acta 596:99

    Article  CAS  Google Scholar 

  13. Chen RS, Huang WH, Tong H, Wang ZL, Cheng JK (2003) Carbon fiber nanoelectrodes modified by single-walled carbon nanotubes. Anal Chem 75:6341

    Article  CAS  Google Scholar 

  14. Gittins DI, Caruso F (2001) Spontaneous phase transfer of nanoparticulate metals from organic to aqueous media. Angew Chem Int Ed 40:3001

    Article  CAS  Google Scholar 

  15. Jung SH, Son HY, Yuk JS, Jung JW, Kim KH, Lee CH, Hwang H, Ha KS (2006) Oriented immobilization of antibodies by a self-assembled monolayer of 2-(biotinamido)ethanethiol for immunoarray preparation. Colloids Surf B: Biointerfaces 47:107

    Article  CAS  Google Scholar 

  16. Lee W, Oh BK, Lee WH, Choi JW (2005) Immobilization of antibody fragment for immunosensor application based on surface plasmon resonance. Colloids Surf B: Biointerfaces 40:143

    Article  CAS  Google Scholar 

  17. Ouerghi O, Touhami A, Othmane A, Ben Ouada H, Ouada H, Martelet C, Fretigny C, Jaffrezic-Renault N (2002) Investigating antibody–antigen binding with atomic force microscopy. Sens Actuat B 84:167

    Article  Google Scholar 

  18. Andrew lyon L, Musick MD, Natan MJ (1998) Colloidal Au-enhanced surface plasmon resonance immunosensing. Anal Chem 70:5177

    Article  Google Scholar 

  19. Fu YG, Yuan R, Tang DP, Chai YQ, Xu N (2005) Study on the immobilization of anti-IgG on Au-colloid modified gold electrode via potentiometric immunosensor, cyclic voltammetry, and electrochemical impedance techniques. Colloids Surf B: Biointerfaces 40:61

    Article  CAS  Google Scholar 

  20. Liu Y, Yu X, Zhao R, Shangguan DH, Bo ZY, Liu GQ (2003) Real time kinetic analysis of the interaction between immunoglobulin G and histidine using quartz crystal microbalance biosensor in solution. Bio Bioelectron 18:1419

    Article  CAS  Google Scholar 

  21. Li JS, He XX, Wu ZY, Wang KM, Shen GL, Yu RQ (2003) Piezoelectric immunosensor based on magnetic nanoparticles with simple immobilization procedures. Anal Chim Acta 481:191

    Article  CAS  Google Scholar 

  22. Wang H, Li JS, Ding YJ, Lei CX, Shen GL, Yu RQ (2004) Novel immunoassay for Toxoplasma gondii-specific immunoglobulin G using a silica nanoparticle-based biomolecular immobilization method. Anal Chim Acta 501:37

    Article  CAS  Google Scholar 

  23. Li JS, Wang H, Deng T, Wu ZY, Shen GL, Yu RQ (2004) A plasma-polymerized film for capacitance immunosensing. Bio Bioelectron 20:841

    Google Scholar 

  24. Ribone ME, Belluzo MS, Pagani D, Macipar IS, Lagier CM (2006) Amperometric bioelectrode for specific human immunoglobulin G determination: optimization of the method to diagnose American trypanosomiasis. Anal Biochem 350:61

    Article  CAS  Google Scholar 

  25. Miloslav P, O’Meara C, Guilbault GG (2001) Polishing of screen-printed electrodes improves IgG adsorption. Talanta 54:887

    Article  Google Scholar 

  26. Liu CH, Liao KT, Huang HJ (2000) Amperometric immunosensors based on protein A coupled polyaniline–perfluorosulfonated ionomer composite electrodes. Anal Chem 72:2925

    Article  CAS  Google Scholar 

  27. Wang J, Pamidi PVA (1998) Sol-gel-derived thick-film amperometric immunosensors. Anal Chem 70:1171

    Article  CAS  Google Scholar 

  28. Pdeste C, Grubelink A, Tiefenauer L (1998) Amperometric immunosensing using microperoxidase MP-11 antibody conjugates. Anal Chim Acta 374:167

    Article  Google Scholar 

  29. Wendzinski F, Gründig B, Renneberg R, Spener F (1997) Highly sensitive determination of hydrogen peroxide and peroxidase with tetrathiafulvalene-based electrodes and the application in immunosensing. Bio Bioelectron 12:43

    Article  CAS  Google Scholar 

  30. Ghindilis AL, Krishnan R, Atanasov P, Wilkins E (1997) Flow-through amperometric immunosensor: fast ‘sandwich’ scheme immunoassay. Bio Bioelectron 12:415

    Article  CAS  Google Scholar 

  31. Goh JB, Tam PL, Loo RW, Goh MC (2003) A quantitative diffraction-based sandwich immunoassay. Anal Biochem 313:262

    Article  CAS  Google Scholar 

  32. Zhang LY, Yuan R, Chai YQ, Chen SH, Wang N, Zhu Q (2006) Layer-by-layer self-assembly of films of nano-Au and Co(bpy)33+ for the determination of Japanese B encephalitis vaccine. Biochem Eng J 28:231

    Article  Google Scholar 

  33. Bǒnnemann H, Brijoux W, Brinkmann R, Dinjus E, Jouβen T, Korall B (1991) Formation of colloidal transition metals in organic phases and their application in catalysis. Angew Chem Int Ed 30:1312

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the Engineering and Institute Center Foundation of Chongqing City, China (GC2X0704), the Education Committee Foundation of Chongqing City, China (KJ070103, KJ070104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingyan Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, L., Liu, Y. & Chen, T. Label-free amperometric immunosensor based on antibody immobilized on a positively charged gold nanoparticle/l-cysteine-modified gold electrode. Microchim Acta 164, 161–166 (2009). https://doi.org/10.1007/s00604-008-0052-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-008-0052-z

Keywords

Navigation