Skip to main content

Self-assembly of a silver nanoparticles modified electrode and its electrocatalysis on neutral red


Silver nanoparticles (AgNP) were synthesized with NaBH4 as reducing agent and oleate as stabilizer. AgNP and L-cysteine (L-cys) were co-deposited on a gold electrode surface to fabricate the AgNP/L-cys modified electrode (AgNP/L-cys/Au). First, we prepared the L-cysteine self-assembled film modified gold electrode through S-Au bond, then it was rinsed into the Ag colloid solution to prepare the Ag nanoparticles/L-cysteine modified electrode through interaction of the silver surface and the carboxylate and amino groups of L-cysteine. After the self-assembled electrode was prepared, the electrochemical behavior of the modified electrode was investigated. The electrochemical response of neutral red (NR) on the modified electrode was investigated. The electrochemical response of cyclic voltammetry and determination by differential pulse voltammetry of neutral red on the modified electrode were reported. We also observed that the modified electrode catalyzes the redox process of neutral red, which provided another way of applying Ag nanoparticles in composite neutral red-AgNP films.

This is a preview of subscription content, access via your institution.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2


  1. 1.

    Caruso F, Spasova M, Salgueirin’ o-Maceira V, Liz-Marza’n LM (2001) Nanoengineering of particle surfaces. Adv Mater 13:11

    Article  CAS  Google Scholar 

  2. 2.

    Ozin GA (1992) Nanochemistry—synthesis in diminishing dimensions. Adv Mater 4:612

    Article  CAS  Google Scholar 

  3. 3.

    Haes AJ, Van Duyne RP (2002) A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J Am Chem Soc 124:10596

    Article  CAS  Google Scholar 

  4. 4.

    Wang L, Wang E (2004) A novel hydrogen peroxide sensor based on horseradish peroxidase immobilized on colloidal Au modified ITO electrode. Electrochem Commun 6:225

    Article  CAS  Google Scholar 

  5. 5.

    Xu S, Han X (2004) A novel method to construct a third-generation biosensor: self-assembling gold nanoparticles on thiol-functionalized poly (styreneco-acrylic acid) nanospheres. Biosens Bioelectron 19:1117

    Article  CAS  Google Scholar 

  6. 6.

    Liu J, Lu Y (2003) A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J Am Chem Soc 125:6642

    Article  CAS  Google Scholar 

  7. 7.

    Huang M, Shao Y, Sun X, Chen H, Liu B, Dong S (2005) Alternate assemblies of platinum nanoparticles and metalloporphyrins as tunable electrocatalysts for dioxygen reduction. Langmuir 21:323

    Article  CAS  Google Scholar 

  8. 8.

    Gopidas KR, Whitesell JK, Fox MA (2003) Characterization, and catalytic applications of a palladium-nanoparticle-cored dendrimer. Nano Lett 3:1757

    Article  CAS  Google Scholar 

  9. 9.

    Kang XH, Mai ZB, Zou XY, Cai PX, Mo JY (2007) A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode. Anal Biochem 363:143

    Article  CAS  Google Scholar 

  10. 10.

    Weng J, Xue JM, Wang J, Ye J, Chu HF, Sheu FS, Zheng QQ (2005) Gold-cluster sensors formed electrochemically at boron doped diamond electrode: detection of dopamine in the presence of ascorbic acid and thiols. Adv Funct Mater 15:639

    Article  CAS  Google Scholar 

  11. 11.

    Rena XL, Menga XW, Chena D, Tanga F, Jiao J (2005) Using silver nanoparticles to enhance current response of biosensor. Biosens Bioelectron 21:433

    Article  Google Scholar 

  12. 12.

    You TY, Niwa O, Tomita M, Hirono S (2003) Characterization of platinum nanoparticle-embedded carbon film electrode and its detection of hydrogen peroxide. Anal Chem 75:2080

    Article  CAS  Google Scholar 

  13. 13.

    Wang J (2005) Nanomaterial-based electrochemical biosensors. Analyst 130:421

    Article  CAS  Google Scholar 

  14. 14.

    Wu S, Zhao HT, Ju HX, Shi CG, Zhao JW (2006) Electrodeposition of silver–DNA hybrid nanoparticles for electrochemical sensing of hydrogen peroxide and glucose. Electrochem Commun 8:1197

    Article  CAS  Google Scholar 

  15. 15.

    Gan X, Liu T, Zhong J, Liu XJ, Li GX (2004) Effect of silver nanoparticles on the electron transfer reactivity and the catalytic activity of myoglobin. Chem Bio Chem 5:1686

    CAS  Google Scholar 

  16. 16.

    Ataka K, Heberle J (2004) Functional vibrational spectroscopy of a cytochrome c monolayer: SEIDAS probes the interaction with different surface modified electrodes. J Am Chem Soc 126:9445

    Article  CAS  Google Scholar 

  17. 17.

    Yang WR, Justin Gooding J, Brynn Hibbert D (2001) Characterization of gold electrodes modified with self-assembled monolayers of L-cysteine for the adsorptive stripping analysis of copper. J Electroanal Chem 516:17

    Article  Google Scholar 

  18. 18.

    Xie QJ, Xiang CH, Zhang YY, Yuan Y, Liu MM, Nie LH, Yao SZ (2002) In situ monitoring of gold-surface adsorption and acidic denaturation of human serum albumin by an isolation-capacitance-adopted electrochemical quartz crystal impedance system. Anal Chim Acta 464:65

    Article  CAS  Google Scholar 

  19. 19.

    Jing CY, Fang Y (2007) Experimental (SERS) and theoretical (DFT) studies on the adsorption behaviors of L-cysteine on gold/silver nanoparticles. Chemical Physics 332:27

    Article  CAS  Google Scholar 

  20. 20.

    Vicente F, Roig A, Garcia-Jareño JJ, Trijueque J, Navarro-Laboulais J, Scholl H, Port (1995) Electrode processes of neutral red on glassy carbon and indium tin oxide electrodes in aqueous buffered solutions. Electrochim Acta 13:137

    CAS  Google Scholar 

  21. 21.

    Ju HX, Dong L, Chen HY (1996) Amperometric determination of lactate dehydrogenase based on a carbon fiber microcylinder electrode modified covalently with Toluidine Blue O by acylation. Talanta 43:1177

    Article  CAS  Google Scholar 

  22. 22.

    Chi Q, Dong S (1995) Electrocatalytic oxidation of reduced nicotinamide coenzymes at organic dye-modified electrodes. Electroanalysis 7:147

    Article  CAS  Google Scholar 

  23. 23.

    Schleret DD, Karyakin AA (1995) Electropolymerization of phenothiazine + UV-visible + Fourier transform IR spectroscopy. J Electronanal Chem 395:221

    Article  Google Scholar 

  24. 24.

    Karyakin AA, Strakhova AK, Karyakina EE, Varfolomeyev SD, Yatsimirsky AK (1993) The electrochemical polymerization of methylene blue and bioelectrochemical activity of the resulting film. Bioelectrochem Bioenerg 32:35

    Article  CAS  Google Scholar 

  25. 25.

    Wang YT, Zhao FL, Li KA, Tong SY (1999) Molecular spectroscopic study of DNA binding with neutral red and application to assay nucleic acids. Anal Chim Acta 396:75

    Article  CAS  Google Scholar 

  26. 26.

    Huang CZ, Li YF, Feng PA (2001) Spectrophotometric study on the interaction of neutral red with double-stranded DNA in large excess. Talanta 55:321

    Article  CAS  Google Scholar 

  27. 27.

    Heli H, Bathaie SZ, Mousavi MF (2005) An electrochemical study of neutral red–DNA interaction. Electrochimica Acta 51:1108

    Article  CAS  Google Scholar 

  28. 28.

    Heli H, Bathaie SZ, Mousavi MF (2004) Electrochemical investigation of neutral red binding to DNA at the surface. Electrochem Commun 6:1114

    Article  CAS  Google Scholar 

  29. 29.

    Karyakin AA, Ivanova YN, Karyakina EE (2003) Equilibrium (NAD+/NADH) potential on poly(Neutral Red) modified electrode. Electrochem Commun 5:677

    Article  CAS  Google Scholar 

  30. 30.

    Wang W, Efrima S, Regev O (1998) Directing oleate stabilized nanosized silver colloids into organic phases. Langmuir 14:602

    Article  CAS  Google Scholar 

  31. 31.

    Liu Y, Hu LM, Yang SQ (2007) Amplification of bioelectrocatalytic signaling based on silver nanoparticles and DNA-derived horseradish peroxidase biosensors. Microchimica Acta DOI 10.1007/s00604-007-0817-9

  32. 32.

    Wang SF, Du D, Zou QC (2002) Electrochemical behavior of epinephrine at L-cysteine self-assembled monolayers modified gold electrode. Talanta 57:687

    Article  CAS  Google Scholar 

  33. 33.

    Xian Y, Wang H, Zhou Y, Pan D, Liu F, Jin L (2004) Preparation of L-Cys–Au colloid self-assembled nanoarray electrode based on the microporous aluminium anodic oxide film and its application to the measurement of dopamine. Electrochem Commun 6:1270

    Article  CAS  Google Scholar 

  34. 34.

    Tang DP, Yuan R, Chai YQ, Fu YZ (2005) Study on electrochemical behavior of a diphtheria immunosensor based on silica/silver/gold nanoparticles and polyvinyl butyral as matrices. Electrochem Commun 7:177

    Article  CAS  Google Scholar 

  35. 35.

    Pei RJ, Cheng ZL, Wang EK, Yang XR (2001) Amplification of antigen—antibody interactions based on biotin labeled protein–streptavidin network complex using impedance spectroscopy. Biosens Bioelectron 16:355

    Article  CAS  Google Scholar 

Download references


We deeply appreciate the support of the Scientific Research Program of Anhui Province College Young Teacher (2005JQ1048ZD), the Young Teacher Program of Anhui Normal University (2006xqn72), and the National Natural Science Foundation of China (20675001).

Author information



Corresponding author

Correspondence to Bin Fang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, G., Wang, W., Wu, J. et al. Self-assembly of a silver nanoparticles modified electrode and its electrocatalysis on neutral red. Microchim Acta 164, 149–155 (2009).

Download citation


  • Silver nanoparticles
  • Modified electrode
  • Neutral red
  • Electrocatalysis
  • Self-assembly