Skip to main content
Log in

Determination of trace molybdenum in biological and water samples by graphite furnace atomic absorption spectrometry after separation and preconcentration on immobilized titanium dioxide nanoparticles

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A new method has been developed for the determination of trace molybdenum based on separation and preconcentration with TiO2 nanoparticles immobilized on silica gel (immobilized TiO2 nanoparticles) prior to its determination by graphite furnace atomic absorption spectrometry (GFAAS). The optimum experimental parameters for preconcentration of molybdenum, such as pH of the sample, sample flow rate and volume, eluent and interfering ions, have been investigated. Molybdenum can be quantitatively retained by immobilized TiO2 nanoparticles at pH 1.0 and separated from the metal cations in the solution, then eluted completely with 0.5 mol L−1 NaOH. The detection limit of this method for Mo was 0.6 ng L−1 with an enrichment factor of 100, and the relative standard deviation (RSD) was 3.4% at the 10 ng mL−1 Mo level. The method has been applied to the determination of trace amounts of Mo in biological and water samples with satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Holzinger S, Anke M, Rohrig B, Gonzalez D (1998) Molybdenum intake of adults in Germany and Mexico. Analyst 123:447

    Article  CAS  Google Scholar 

  2. Underwood EJ (1977) Trace elements in human and animal nutrition. Academic, New York.

    Google Scholar 

  3. Baralkiewicz D, Siepak J (1997) Determination of trace amounts of molybdenum in water samples by graphite furnace atomic absorption spectrometry with multiple injections and cool down step. Anal Chim Acta 353:85

    Article  CAS  Google Scholar 

  4. Ensafl AA, Khaloo SS (2005) Determination of traces molybdenum by catalytic adsorptive stripping voltammetry. Talanta 65:781

    Article  Google Scholar 

  5. Du JX, Li JJ, Yang LJ, Lu JR (2003) Sensitive and selective determination of molybdenum by flow injection chemiluminescence method combined with controlled potential electrolysis technique. Anal Chim Acta 481:239

    Article  CAS  Google Scholar 

  6. Shijo Y, Suzuki M, Shimizu T, Aratake S, Uehara N (1996) Determination of trace amounts of molybdenum in rainwater and snow by graphite-furnace atomic absorption spectrometry after solvent extraction and micro-volume back-extraction. Anal Sci 12:953

    Article  CAS  Google Scholar 

  7. Ghiasvand AR, Shadabi S, Mohagheghzadeh E, Hashemi P (2005) Homogeneous liquid–liquid extraction method for the selective separation and preconcentration of ultra trace molybdenum. Talanta 66:912

    Article  CAS  Google Scholar 

  8. Burguera JL, Burguera M, Rondon C (2002) An on-line flow-injection microwave-assisted mineralization and a precipitation/dissolution system for the determination of molybdenum in blood serum and whole blood by electrothermal atomic absorption spectrometry. Talanta 58:167

    Google Scholar 

  9. Sung YH, Liu ZS, Huang SD (1997) Use of Muromac A-1 chelating resin for determination of copper and molybdenum in seawater by atomic absorption with on-line preconcentration. Spectromchim Acta Part B 52:755

    Article  Google Scholar 

  10. Yu JC, Chan SM, Chen ZL (2003) Preconcentration using diethylenetriaminetetraacetic acid-functionalized polysiloxane (DETAP) for determination of molybdenum(VI) in seawater by ICP-OES. Anal Bioanal Chem 376:728

    Article  CAS  Google Scholar 

  11. Giacomelli MBO, Silva JBB, Curtius AJ (1998) Determination of Mo and Bi in steels by electrothermal atomic absorption spectrometry after complexation and sorption on activated carbon. Talanta 47:877

    Article  CAS  Google Scholar 

  12. Santos HC, Korn MGA, Ferreira SLC (2001) Enrichment and determination of molybdenum in geological samples and seawater by ICP-AES using calmagite and activated carbon. Anal Chim Acta 426:79

    Article  Google Scholar 

  13. Ferreira SLC, Santos HC, Campos RC (2003) The determination of molybdenum in water and biological samples by graphite furnace atomic spectrometry after polyurethane foam column separation and preconcentration. Talanta 61:789

    Article  CAS  Google Scholar 

  14. Oshita K, Xu JS, Gao YH, Lee KH, Oshima M, Motomizu S (2003) Synthesis of cross-linked chitosan resin possessing leucine moiety for the column collection/concentration of molybdenum and determination of molybdenum by ICP-MS, ICP-AES and GFAAS. Bull Chem Soc Japan 76:1555

    Article  CAS  Google Scholar 

  15. Li QM, Zhao XH, Guan X, Liu GG (2006) A novel method of the separation/preconcentration and determination of trace molybdenum(VI) in water samples using microcrystalline triphenylmethane loaded with salicyl fluorone. Anal Chim Acta 562:44

    Article  CAS  Google Scholar 

  16. Gil RA, Pasini-Cabello S, Takara A, Smichowski P, Olsina RA, Martinez LD (2007) A novel on-line preconcentration method for trace molybdenum determination by USN-ICP OES with biosorption on immobilized yeasts. Microchem J 86:156

    Article  CAS  Google Scholar 

  17. Bellato ACS, Gervasio APG, Gine MF (2005) Cloud-point extraction of molybdenum in plants and determination by isotope dilution inductively coupled plasma mass spectrometry. J Anal At Spectrom 20:535

    Article  CAS  Google Scholar 

  18. Lopez-Garcia I, Vinas P, Romero RR, Hernandez-Cordoba M (2007) Liquid chromatography- electrothermal atomic absorption spectrometry for the separation and preconcentration of molybdenum in milk and infant formulas. Anal Chim Acta 597:187

    Article  CAS  Google Scholar 

  19. Fritz JS (1999) Aanlytical solid-phase extraction. Wiley, New York.

    Google Scholar 

  20. Ajayan PM, Schadler LS, Braun PV (2003) Nanocomposite Science and Technology. Wiley, Weinheim

    Google Scholar 

  21. Klabunde KJ (2001) Nanoscale materials in chemistry. Wiley, New York.

    Google Scholar 

  22. Wang ZL (2000) Characterization of nanophase materials. Wiley, Weinheim.

    Google Scholar 

  23. Liang P, Qin YC, Hu B, Li CX, Peng TY, Jiang ZC (2000) Study on adsorption behavior of heavy metal ions on nanometer-size titanium dioxide with ICP-AES. Fresenius J Anal Chem 368:638

    Article  CAS  Google Scholar 

  24. Liang P, Qin YC, Hu B, Peng TY, Jiang ZC (2001) Nanometer-size titanium dioxide microcolumn on-line preconcentration of trace metals and their determination by inductively coupled plasma atomic emission spectrometry in water. Anal Chim Acta 440:207

    Article  CAS  Google Scholar 

  25. Liang P, Hu B, Jiang ZC, Qin YC, Peng TY (2001) Nanometer-sized titanium dioxide micro-column on-line preconcentration of La, Y, Yb, Eu, Dy and their determination by inductively coupled plasma atomic emission spectrometry. J Anal At Spectrom 16:863

    Article  CAS  Google Scholar 

  26. Liang P, Shi TQ, Li J (2004) Nanometer-size titanium dioxide separation/preconcentration and FAAS determination of trace Zn and Cd in water sample. Intern J Environ Anal Chem 84:315

    Article  CAS  Google Scholar 

  27. Kim BH, Lee JY, Choa YH, Higuchi M, Mizutani N (2004) Preparation of TiO2 thin film by liquid sprayed mist CVD method. Mater Sci Eng B 107:289

    Article  Google Scholar 

  28. Yanagi H, Ohoka Y, Hishiki T, Ajito K, Fujishima A (1997) Characterization of dye-doped TiO2 films prepared by spray-pyrolysis. Appl Surf Sci 113–114:426

    Article  Google Scholar 

  29. Mills A, Lee SK, Lepre A (2003) Photodecomposition of ozone sensitised by a film of titanium dioxide on glass. J Photochem Photobiol A: Chem 155:199

    Article  CAS  Google Scholar 

  30. Sonawane RS, Kale BB, Dongare MK (2004) Preparation and photo-catalytic activity of Fe-TiO2 thin films prepared by sol–gel dip coating. Mater Chem Phys 85:52

    Article  CAS  Google Scholar 

  31. Li M, Chen Y (1996) An investigation of response time of TiO2 thin-film oxygen sensors. Sens Actuators B 32:83

    Article  CAS  Google Scholar 

  32. Kay A, Gratzel M (1993) Artificial photosynthesis. 1. Photosensitization of titania solar cells with chlorophyll derivatives and related natural porphyrins. J Phys Chem 97:6272

    Article  CAS  Google Scholar 

  33. Haarstrick A, Kut OM, Heinzle E (1996) TiO2-assisted degradation of environmentally relevant organic compounds in wastewater using a novel fluidized bed photoreactor. Environ Sci Tech 30:817

    Article  CAS  Google Scholar 

  34. Liu Y, Liang P, Guo L (2005) Nanometer titanium dioxide immobilized on silica gel as sorbent for preconcentration of metal ions prior to their determination by inductively coupled plasma atomic emission spectrometry. Talanta 68:25

    Article  CAS  Google Scholar 

  35. Brunelle J P (1979) Proceedings of the Second International Symposium on the Preparation of Catalysts, Elsevier, Amsterdam, p211

  36. Maquieira A, Elmahadi HAM, Puchades R (1994) Immobilized cyanobacteria for on-line trace metal enrichment by flow injection atomic absorption spectrometry. Anal Chem 66:3632

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liang, P., Li, Q. & Liu, R. Determination of trace molybdenum in biological and water samples by graphite furnace atomic absorption spectrometry after separation and preconcentration on immobilized titanium dioxide nanoparticles. Microchim Acta 164, 119–124 (2009). https://doi.org/10.1007/s00604-008-0042-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-008-0042-1

Keywords

Navigation