Skip to main content
Log in

Headspace single-drop microextraction with in situ stibine generation for the determination of antimony (III) and total antimony by electrothermal-atomic absorption spectrometry

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A headspace-single drop microextraction method combined with electrothermal atomic absorption spectrometry (ETAAS) is developed for the extraction and preconcentration of antimony(III) and total antimony into a Pd(II)-containing aqueous drop after hydride generation. Experimental variables such as hydrochloric acid and sodium tetrahydroborate concentrations, sample volume, Pd(II) concentration in the acceptor phase and microextraction time were optimized. A 26-2 IV factorial fractional design was initially used for screening the effect of the variables, followed by an univariate approach. The method showed a great freedom from interferences caused by hydride-forming elements and transition metals. The detection limit of Sb(III) was 25 pg mL−1. A preconcentration factor of 176 is achieved in 3 min. The repeatability, expressed as relative standard deviation, was 4.7%. The method was validated against two certified reference materials (NWRI-TM 27.2 and NIST 2711) and applied to the determination of Sb(III) and total Sb in waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Filella M, Belzile N, Chen Y-W (2002) Antimony in the environment: a review focused on natural waters—I. Occurrence. Earth Sci Rev 57:125

    Article  CAS  Google Scholar 

  2. Donard OFX, Caruso JA (1998) Trace metal and metalloid species determination: evolution and trends. Spectrochim Acta Part B 53:157

    Article  Google Scholar 

  3. Council of the European Communities (1998) Council Directive Relating to the Quality of Water Intended for Human Consumption (98/83/CE)

  4. Trivelin LA, Rodrigues Rohwedder JJ, Rath S (2006) Determination of pentavalent antimony in antileishmaniotic drugs using an automated system for liquid–liquid extraction with on-line detection. Talanta 68:1536

    Article  CAS  Google Scholar 

  5. Zhang L, Morita Y, Sakuragawa A, Isozaki A (2007) Inorganic speciation of As(III,V), Se(IV, VI) and Sb(III, V) in natural water with GF-AAS using solid phase extraction technology. Talanta 72:723

    Article  Google Scholar 

  6. Feng Y-L, Narasaki H, Chen H-Y, Tian L-C (1999) Speciation of antimony(III) and antimony(V) using hydride generation inductively coupled plasma atomic emission spectrometry combined with the rate of pre-reduction of antimony. Anal Chim Acta 386:297

    Article  CAS  Google Scholar 

  7. Cabon JY, Madec CL (2004) Determination of major antimony species in seawater by continuous flow injection hydride generation atomic absorption spectrometry. Anal Chim Acta 504:209

    Article  CAS  Google Scholar 

  8. Semenova NV, Leal LO, Forteza R, Cerdà V (2005) Antimony determination and speciation by multisyringe flow injection analysis with hydride generation-atomic fluorescence detection. Anal Chim Acta 530:113

    Article  CAS  Google Scholar 

  9. Li Y, Hu B, Jiang Z (2006) On-line cloud point extraction combined with electrothermal vaporization inductively coupled plasma atomic emission spectrometry for the speciation of inorganic antimony in environmental and biological samples. Anal Chim Acta 576:207

    Article  CAS  Google Scholar 

  10. Bosch Ojeda C, Sánchez Rojas F, Cano Pavón JM, Terrer Martín L (2005) Use of 1,5-bis(di-2-pyridyl)methylene thiocarbohydrazide immobilized on silica gel for automated preconcentration and selective determination of antimony(III) by flow injection electrothermal atomic absorption spectrometry. Anal Bioanal Chem 382:513

    Article  CAS  Google Scholar 

  11. Craig PJ, Sergeeva T, Jenkins RO (2001) Determination of inorganic Sb(V) and methylantimony species by HPLC with hydride generation-atomic fluorescence spectrometric detection. Mikrochim Acta 137:221

    CAS  Google Scholar 

  12. Lopez-Molinero A, Echegoyen Y, Sipiera D, Castillo JR (2005) Antimony(V) volatilization with bromide and determination by inductively coupled plasma atomic emission spectrometry. Talanta 66:863

    Article  CAS  Google Scholar 

  13. Yu C, Cai Q, Guo Z-X, Yang Z, Beng Khoo S (2002) Antimony speciation by inductively coupled plasma mass spectrometry using solid phase extraction cartridges. Analyst 127:1380

    Article  CAS  Google Scholar 

  14. Psillakis E, Kalogerakis N (2002) Developments in single-drop microextraction. TrAc Trends Anal Chem 21:53

    Article  CAS  Google Scholar 

  15. Fan Z, Zhou W (2006) Dithizone-chloroform single drop microextraction system combined with electrothermal atomic absorption spectrometry using Ir as permanent modifier for the determination of Cd in water and biological samples. Spectrochim Acta Part B 61:870

    Article  Google Scholar 

  16. Xia L, Hu B, Jiang Z, Wu Y, Liang Y (2004) Single-drop microextraction combined with low-temperature electrothermal vaporization ICPMS for the determination of Trace Be, Co, Pd, and Cd in biological samples. Anal Chem 76:2910

    Article  CAS  Google Scholar 

  17. Li L, Hu B, Xia L, Jiang Z (2006) Determination of trace Cd and Pb in environmental and biological samples by ETV-ICP-MS after single-drop microextraction. Talanta 70:468

    Article  CAS  Google Scholar 

  18. Xia L, Hu B, Jiang Z, Wu Y, Li L, Chen R (2005) 8-Hydroxyquinoline-chloroform single drop microextraction and electrothermal vaporization ICP-MS for the fractionation of aluminium in natural waters and drinks. J Anal At Spectrom 20:441

    Article  CAS  Google Scholar 

  19. Chamsaz M, Arbab-Zavar MH, Nazari S (2003) Determination of arsenic by electrothermal atomic absorption spectrometry using headspace liquid phase microextraction after in situ hydride generation. J Anal At Spectrom 18:1279

    Article  CAS  Google Scholar 

  20. Fragueiro S, Lavilla I, Bendicho C (2004) Headspace sequestration of arsine onto a Pd(II)-containing aqueous drop as a preconcentration method for electrothermal atomic absorption spectrometry. Spectrochim Acta Part B 59:851

    Article  Google Scholar 

  21. Fragueiro S, Lavilla I, Bendicho C (2006) Hydride generation-headspace single drop microextraction-electrothermal atomic absorption spectrometry method for determination of selenium in waters after photoassisted prereduction. Talanta 68:1096

    Article  CAS  Google Scholar 

  22. Figueroa R, García M, Lavilla I, Bendicho C (2005) Photoassisted vapor generation in the presence of organic acids for ultrasensitive determination of Se by electrothermal-atomic absorption spectrometry following headspace single-drop microextraction. Spectrochim Acta Part B 60:1556

    Article  Google Scholar 

  23. Fan Z (2007) Determination of antimony(III) and total antimony by single-drop microextraction combined with electrothermal atomic absorption spectrometry. Anal Chim Acta 585:300

    Article  CAS  Google Scholar 

  24. Liu JF, Chi YG, Jiang GB (2005) Screening the extractability of some typical environmental pollutants by ionic liquids in liquid-phase microextraction. J Sep Sci 28:87

    Article  Google Scholar 

  25. Shioji H, Tsunoi S, Harino H, Tanaka M (2004) Liquid-phase microextraction of tributyltin and triphenyltin coupled with gas chromatography-tandem mass spectrometry Comparison between 4-fluorophenyl and ethyl derivatizations. J Chromatogr A 1048:81

    CAS  Google Scholar 

  26. Gil S, Fragueiro S, Lavilla I, Bendicho C (2005) Determination of methylmercury by electrothermal atomic absorption spectrometry using headspace single-drop microextraction with in situ hydride generation. Spectrochim Acta Part B 60:145

    Article  Google Scholar 

  27. Colombini V, Bancon-Montigny C, Yang L, Maxwell P, Sturgeon RE, Mester Z (2004) Headspace single-drop microextration for the detection of organotin compounds. Talanta 63:555

    Article  CAS  Google Scholar 

  28. Box GEP, Hunter JS, Hunter WG (1989) Estadística para investigadores, 1st edn. Reverté, Barcelona

    Google Scholar 

  29. Kirkbright GF, Taddia M (1978) Application of masking agents in minimizing interferences from some metal ions in the determination of arsenic by atomic absorption spectrometry with the hydride generation technique. Anal Chim Acta 100:145

    Article  CAS  Google Scholar 

  30. Welz B, Melcher M (1984) Mechanisms of transition metal interferences in hydride generation atomic-absorption spectrometry: part 2. Influence of the valency state of arsenic on the degree of signal depression caused by copper, iron and nickel. Analyst 109:573

    Article  CAS  Google Scholar 

  31. Psillakis E, Kalogerakis N (2001) Application of solvent microextraction to the analysis of nitroaromatic explosives in water samples. J Chromatogr A 907:211

    Article  CAS  Google Scholar 

  32. Ding W-W, Sturgeon RE (1996) Interference of copper and nickel on electrochemical hydride generation. J Anal At Spectrom 11:421

    Article  CAS  Google Scholar 

  33. Deng T-L, Chen Y-W, Belzile N (2001) Antimony speciation at ultra trace levels using hydride generation atomic fluorescence spectrometry and 8-hydroxyquinoline as an efficient masking agent. Anal Chim Acta 432:293

    Article  CAS  Google Scholar 

  34. Yan XP, Van Mol W, Adams F (1996) Determination of (ultra)trace amounts of antimony(III) in water by flow injection on-line sorption preconcentration in a knotted reactor coupled with electrothermal atomic absorption spectrometry. Analyst 121:1061

    Article  CAS  Google Scholar 

  35. Matusiewicz H, Kopras M (2003) Simultaneous determination of hydride forming elements (As, Bi, Ge, Sb, Se) and Hg in biological and environmental reference materials by electrothermal vaporization-microwave induced plasma-optical emission spectrometry with their in situ trapping in a graphite furnace. J Anal At Spectrom 18:1415

    Article  CAS  Google Scholar 

  36. Mester Z, Sturgeon RE, Lam JW (2000) Sampling and determination of metal hydrides by solid phase microextraction thermal desorption inductively coupled plasma mass spectrometry. J Anal At Spectrom 15:1461

    Article  CAS  Google Scholar 

  37. Amin MN, Kaneco S, Nomura K, Suzuki T, Ohta K (2003) Determination of antimony in waters by electrothermal atomic absorption spectrometry with preconcentration on a tantalum wire. Microchim Acta 141:87

    Article  CAS  Google Scholar 

  38. Sánchez Rojas F, Bosch Ojeda C, Cano Pavón JM (2007) An ion-exchange method for speciation of antimony by flow injection electrothermal atomic absorption spectrometry. Talanta 71:918

    Article  Google Scholar 

  39. Matusiewicz H, Krawczyk M (2008) Determination of total antimony and inorganic antimony species by hydride generation in situ trapping flame atomic absorption spectrometry: a new way to (ultra)trace speciation analysis. J Anal At Spectrom 23:43

    Article  CAS  Google Scholar 

  40. Garbós S, Rzepecka M, Bulska E, Hulanicki A (1999) Microcolumn sorption of antimony (III) chelate for antimony speciation studies. Spectrochim Acta Part B 54:873

    Article  Google Scholar 

  41. Niedzielski P, Siepak M (2003) Determination of Sb(III) and Sb(V) in water samples by hydride generation atomic absorption spectrometry with in-situ trapping in a graphite tube. Anal Lett 36:971

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support from the Spanish Education and Science Ministry (project CTQ2006-04111/BQU) and the Galician government (Xunta de Galicia) (project PGIDIT05PXIB31401PR) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Bendicho.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM Supplementary section (PDF 40 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pena-Pereira, F., Lavilla, I. & Bendicho, C. Headspace single-drop microextraction with in situ stibine generation for the determination of antimony (III) and total antimony by electrothermal-atomic absorption spectrometry. Microchim Acta 164, 77–83 (2009). https://doi.org/10.1007/s00604-008-0036-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-008-0036-z

Keywords

Navigation