Skip to main content
Log in

Optimization of a sensitive method for the “switch-on” determination of mercury(II) in waters using Rhodamine B capped gold nanoparticles as a fluorescence sensor

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

Monodisperse and “naked” gold nanoparticles (GNPs) were modified with thioglycolic acid (TGA). The fluorescence of rhodamine B (RB) is quenched completely by the gold NPs surface with negative charge mainly as a result of fluorescence resonance energy transition (FRET) and collision. The quenching mechanism can be described by a Langmuir isotherm, which was systematically investigated by steady-state fluorescence spectrometry and absorption spectrometry. Hg(II) ion disrupts the GNPs–RB pair, producing a large “switch-on” fluorescence. A low background, highly sensitive and reproducible fluorescence assay for Hg(II) is presented. Under the optimum conditions, the restoration fluorescence intensity is proportional to the concentration of Hg(II). The calibration graphs are linear over the range of 1.0 × 10−9 to 3.1 × 10−8 mol L−1 with a detection limit of 4.0 × 10−10 mol L−1. The relative standard deviation was 1.2% for a 5.0 × 10−9 mol L−1 Hg(II) solution (N = 6). This method was applied to the analysis of Hg(II) in environmental water samples, and the results were consistent with those of atomic absorption spectroscopy (AAS).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. de Silva AP, Gunarane HQN, Gunnlaugsson TA, Huxley JM, McCoy CP, Rademacher JT, Rice TE (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97:1515

    Article  Google Scholar 

  2. Fabbrizzi L, Poggi A (1995) Sensors and switches from supramolecular chemistry. Chem Soc Rev 24:197

    Article  CAS  Google Scholar 

  3. Zheng W, Aschner M, Ghersi-Egea JF (2003) Brain barrier systems: a new frontier in metal neurotoxicological research. Toxicol Appl Pharmacol 192:1

    Article  CAS  Google Scholar 

  4. Vil’pan YA, Grinshtein IL, Akatove AA, Gucer S (2005) Direct atomic absorption determination of mercury in drinking water and urine using a two-step electrothermal atomizer. J Anal Chem 60:38

    Article  CAS  Google Scholar 

  5. Karunasagar D, Arunachalam J, Gangadharan S (1998) Development of a collect and punch cold vapour inductively coupled plasma mass spectrometric method for the direct determination of mercury at nanograms per litre levels. J Anal At Spectrom 13:679

    Article  CAS  Google Scholar 

  6. Yu LP, Yan XP (2004) Flow injection online sorption preconcentration coupled with cold vapor atomic fluorescence spectrometry with online oxidative elution for determination of trace mercury in water samples. At Spectr 25:145

    CAS  Google Scholar 

  7. Trimble CA, Hoenstine RW, Highley AB, Donoghue JF, Ragland PC (1999) Baseline sediment trace metals investigation: steinhatchee river estuary, Florida, Northeast Gulf of Mexico. Mar Georesour Geotechnol 17:187

    Article  CAS  Google Scholar 

  8. Yin X, Xu Q, Xu X (1995) Speciation analysis of mercury I. Separation and determination of methylmercury, ethylmercury, phenylmercury and mercury (II) by liquid chromatography after chloroform extraction. Fenxi Huaxue 23:1168

    CAS  Google Scholar 

  9. Fan LJ, Zhang Y, Jones WE (2005) Design and synthesis of fluorescence “turn-on” chemosensors based on photoinduced electron transfer in conjugated polymers. Macromolecules 38:2844

    Article  CAS  Google Scholar 

  10. Kim IB, Bunz UHF (2006) Modulating the sensory response of a conjugated polymer by proteins: an agglutination assay for mercury ions in water. J Am Chem Soc 128:2818

    Article  CAS  Google Scholar 

  11. Zhao Y, Zhong Z (2006) Tuning the sensitivity of a foldamer-based mercury sensor by its folding energy. J Am Chem Soc 128:9988

    Article  CAS  Google Scholar 

  12. Cheng P, He C (2004) A general strategy to convert the MerR family proteins into highly sensitive and selective fluorescent biosensors for metal ions. J Am Chem Soc 126:728

    Article  CAS  Google Scholar 

  13. Ono A, Togashi H (2004) Highly selective oligonucleotide-based sensor for mercury(II) in aqueous solutions. Angew Chem Int Ed 43:4300

    Article  CAS  Google Scholar 

  14. Matsuchita M, Meijler MM, Wirsching P, Lerner RA, Janda KD (2005) A blue fluorescent antibody-cofactor sensor for mercury. Org Lett 7:4943

    Article  CAS  Google Scholar 

  15. Chen JL, Gao YC, Xu ZB, Wu GH, Chen YC, Zhu CQ (2006) A novel fluorescent array for mercury (II) ion in aqueous solution with functionalized cadmium selenide nanoclusters. Anal Chim Acta 577:77

    Article  CAS  Google Scholar 

  16. Zhu CQ, Li L, Fang F, Chen JL, Wu YQ (2005) Functional InP nanocrystals as novel near-infrared fluorescent sensors for mercury ions. Chem Lett 34:898

    Article  CAS  Google Scholar 

  17. Cai ZX, Yang H, Zhang Y, Yan XP (2006) Preparation, characterization and evaluation of water-soluble l-cysteine-capped-CdS nanoparticles as fluorescence probe for detection of Hg(II) in aqueous solution. Anal Chim Acta 559:234

    Article  CAS  Google Scholar 

  18. Liu B, Tian H (2005) A selective fluorescent ratiometric chemodosimeter for mercury ion. Chem Commun 25:3156–3158

    Article  CAS  Google Scholar 

  19. Yang YK, Yook KY, Tae JS (2005) A rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg2+ ions in aqueous media. J Am Chem Soc 127:16760

    Article  CAS  Google Scholar 

  20. Zheng H, Qian ZH, Xu L, Yuan FF, Lan LD, Xu JG (2006) Switching the recognition preference of rhodamine B spirolactam by replacing one atom: design of rhodamine B thiohydrazide for recognition of Hg(II) in aqueous solution. Org Lett 8:859

    Article  CAS  Google Scholar 

  21. Kim SH, Kim JS, Park SM, Chang SK (2006) Hg2+-selective off–on and Cu2+-selective on–off type fluoroionophore based upon cyclam. Org Lett 8:371

    Article  CAS  Google Scholar 

  22. Lee MH, Wu JS, Lee JW, Jung JH, Kim JS (2007) Highly sensitive and selective chemosensor for Hg2+ based on the rhodamine fluorophore. Org Lett 9:2501

    Article  CAS  Google Scholar 

  23. Nolan EM, Lippard SJ (2007) Turn-on and ratiometric mercury sensing in water with a red-emitting probe. J Am Chem Soc 129:5910

    Article  CAS  Google Scholar 

  24. Hu M, Chen JY, Li ZY, Au L, Hartland GV, Li XD, Marquez M, Xia YN (2006) Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem Soc Rev 35:1084

    Article  CAS  Google Scholar 

  25. Bukasov R, Shumaker-Parry JS (2007) Highly tunable infrared extinction properties of gold nanocrescents. Nano Lett 7:1113

    Article  CAS  Google Scholar 

  26. Liu JW, Lu Y (2005) Stimuli-responsive disassembly of nanoparticle aggregates for light-up colorimetric sensing. J Am Chem Soc 127:12677

    Article  CAS  Google Scholar 

  27. Norsten TB, Frankamp BL, Rotello VM (2002) Metal directed assembly of terpyridine-functionalized gold nanoparticles. Nano Lett 2:1345

    Article  CAS  Google Scholar 

  28. Obare SO, Hollowell RE, Murphy CJ (2002) Sensing strategy for lithium ion based on gold nanoparticles. Langmuir 18:10407

    Article  CAS  Google Scholar 

  29. Lin SY, Chen CH, Lin MC, Hsu HF (2005) A cooperative effect of bifunctionalized nanoparticles on recognition: sensing alkali ions by crown and carboxylate moieties in aqueous media. Anal Chem 77:4821

    Article  CAS  Google Scholar 

  30. Choi YD, Ho NH, Tung CH (2007) Sensing phosphatase activity by using gold nanoparticles. Angew Chem Int Ed 46:707

    Article  CAS  Google Scholar 

  31. Lin SY, Wu SH, Chen CH (2006) A simple strategy for prompt visual sensing by gold nanoparticles: general applications of interparticle hydrogen bonds. Angew Chem Int Ed 45:4948

    Article  CAS  Google Scholar 

  32. Kim YJ, Johnson RC, Hupp JT (2001) Gold nanoparticle-based sensing of “spectroscopically silent” heavy metal ions. Nano Lett 1:165

    Article  CAS  Google Scholar 

  33. Rex M, Hernandez FE, Campiglia AD (2006) Pushing the limits of mercury sensors with gold nanorods. Anal Chem 78:445

    Article  CAS  Google Scholar 

  34. Huang CC, Chang HT (2007) Parameters for selective colorimetric sensing of mercury(II) in aqueous solutions using mercaptopropionic acid-modified gold nanoparticles. Chem Commun 12:1215–1217

    Article  CAS  Google Scholar 

  35. Lee JS, Han MS, Mirkin CA (2007) Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angew Chem Int Ed 46:4093

    Article  CAS  Google Scholar 

  36. Kamat PV, Barazzouk S, Hotchandani S (2002) Electrochemical modulation of fluorophore emission on a nanostructured gold Film. Angew Chem Int Ed 41:2764

    Article  CAS  Google Scholar 

  37. Dulkeith E, Morteani AC, Niedereichholz T, Klar TA, Feldmann J, Levi SA, van Veggel FCJM, Reinhoudl DN, Möller M, Gittins DI (2002) Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects. Phys Rev Lett 89:203002

    Article  CAS  Google Scholar 

  38. Huang T, Murray RW (2002) Quenching of [Ru(bpy)3]2+ fluorescence by binding to Au nanoparticles. Langmuir 18:7077

    Article  CAS  Google Scholar 

  39. Clapp AR, Medintz IL, Mauro JM, Fisher BR, Bawendi MG, Mattoussi H (2004) Fluorescence resonance energy transfer between quantum dot donors and dye-labeled protein acceptors. J Am Chem Soc 126:301

    Article  CAS  Google Scholar 

  40. Oh E, Hong MY, Lee D, Nam SH, Yoon HC, Kim HS (2005) Inhibition assay of biomolecules based on fluorescence resonance energy transfer (FRET) between quantum dots and gold nanoparticles. J Am Chem Soc 127:3270

    Article  CAS  Google Scholar 

  41. Oh E, Lee DH, Kim YP, Youp S, Oh DB, Kang HA, Kim JB, Kim HS (2006) Nanoparticle-based energy transfer for rapid and simple detection of protein glycosylation. Angew Chem Int Ed 45:7959

    Article  CAS  Google Scholar 

  42. Wang LY, Yan RX, Huo ZY, Wang L, Zeng JH, Bao J, Wang X, Peng Q, Li YD (2005) Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. Angew Chem Int Ed 44:6054

    Article  CAS  Google Scholar 

  43. Fisher NO, McIntosh CM, Simard JM, Rotello VM (2002) Supramolecular chemistry and self-assembly special feature: inhibition of chymotrypsin through surface binding using nanoparticle-based receptors. Proc Natl Acad Sci 99:5018

    Article  CAS  Google Scholar 

  44. You CC, Miranda OR, Gider B, Ghoshi PS, Kim IB, Erdogan B, Krovi SA, Bunz UHF, Rotello VM (2007) Detection and identification of proteins using nanoparticle-fluorescent polymer ‘chemical nose’ sensors. Nat Nanotech 2:318

    Article  CAS  Google Scholar 

  45. He XR, Liu HB, Li YL, Wang S, Li YJ, Wang N, Xiao JC, Xu XH, Zhu DB (2005) Gold nanoparticle-based fluorometric and colorimetric sensing of copper (II) ions. Adv Mater 17:2811

    Article  CAS  Google Scholar 

  46. Huang CC, Chang HT (2006) Selective gold-nanoparticle-based “Turn-On” fluorescent sensors for detection of mercury (II) in aqueous solution. Anal Chem 78:8332

    Article  CAS  Google Scholar 

  47. Chen JL, Zheng AF, Chen AH, Gao YC, He CY, Kai XM, Wu GH, Chen YC (2007) A functionalized gold nanoparticles and rhodamine 6G based fluorescent sensor for high sensitive and selective detection of mercury (II) in environmental water samples. Anal Chim Acta 599:134

    Article  CAS  Google Scholar 

  48. Mucic RC, Storhoff JJ, Mirkin CA, Letsinger RL (1998) DNA-directed synthesis of binary nanoparticle network materials. J Am Chem Soc 120:12674

    Article  CAS  Google Scholar 

  49. Grabar KC, Freeman RG, Hommer MB, Natan MJ (1995) Preparation and characterization of Au colloid monolayers. Anal Chem 67:735

    Article  CAS  Google Scholar 

  50. Morris T, Copeland H, McLinden E, Wilson S, Szulczewski G (2002) The effects of mercury adsorption on the optical response of size-selected gold and silver nanoparticles. Langmuir 18:7261

    Article  CAS  Google Scholar 

  51. Henglein A, Giesig M (2000) Optical and chemical observations on gold–mercury nanoparticles in aqueous solution. J Phys Chem B 104:5056

    Article  CAS  Google Scholar 

  52. Vedrina-Dragojevič I, Dragojević D, Čadež S (1997) Spectrofluorimetric method for the determination of the total mercury content in sediment and soil. Anal Chim Acta 355:151

    Article  Google Scholar 

  53. Balint L, Vedrina-Dragojević I, Šebečić B, Momirović-Čuljat J, Horvatić M (1997) Spectrofluorometric method for determination of the total mercury content in environmental samples-waste waters. Microchim Acta 127:61

    Article  CAS  Google Scholar 

  54. Sudeep PK, Shidu Joseph ST, Thomas KG (2005) Selective detection of cysteine and glutathione using gold nanorods. J Am Chem Soc 127:6516

    Article  CAS  Google Scholar 

  55. Kou XS, Zhang SZ, Yang Z, Tsung CK, Stucky GD, Sun LD, Wang JF, Yan CH (2007) Glutathione- and cysteine-induced transverse overgrowth on gold nanorods. J Am Chem Soc 129:6402

    Article  CAS  Google Scholar 

  56. Lim IS, Goroleski F, Mott D, Karriuki N, Ip W, Luo J, Zhong CJ (2006) Adsorption of cyanine dyes on gold nanoparticles and formation of J-aggregates in the nanoparticle assembly. J Phys Chem B 110:6673

    Article  CAS  Google Scholar 

  57. Barazzouk S, Kammat PV, Hotchandani S (2005) Photoinduced electron transfer between chlorophyll a and gold nanoparticles. J Phys Chem B 109:716

    Article  CAS  Google Scholar 

  58. Nasr C, Liu D, Hotchandani S, Kammat PV (1996) Dye capped semiconductor colloids. Excited state and photosensitization aspects of Rhodamine 6G-H aggregates electrostatically bound to SiO2 and SnO2 Colloids. J Phys Chem B 100:11054

    Article  CAS  Google Scholar 

  59. Chandrasekharan N, Kammat PV, Hu JQ, Jones G II (2000) Dye-capped gold nanoclusters: photoinduced morphological changes in gold/rhodamine 6G nanoassemblies. J Phys Chem B 104:11103

    Article  CAS  Google Scholar 

  60. Fan CH, Wang S, Hong JW, Bazan GC, Plaxco KW, Heeger AJ (2003) Beyond superquenching: Hyper-efficient energy transfer from conjugated polymers to gold nanoparticles. Proc Natl Acad Sci 100:6297

    Article  CAS  Google Scholar 

  61. Chen JS, Chang HT (2004) Nile Red-adsorbed gold nanoparticles for selective determination of thiols based on energy transfer and aggregation. Anal Chem 76:3727

    Article  CAS  Google Scholar 

  62. According to the EPA guidelines (http://oaspub.epa.gov), tolerance limit for merury in drinking water is no greater than 0.002 mg l−1

  63. Iandor MS, Geistmann F, Schuster M (1999) An anthracene-substituted benzoylthiourea for the selective determination of Hg(II) in micellar media. Anal Chim Acta 388:19

    Article  Google Scholar 

  64. Lista AG, Palomeque ME, Fernández Band BS (1999) Flow-injection fluorimetric determination of mercury (II) with calcein. Talanta 50:881

    Article  CAS  Google Scholar 

  65. Juskowiak B (1996) Efficient quenching of the fluorescence of binaphthyl-based amphiphiles by mercury (II) complexes. Anal Chim Acta 320:115

    Article  CAS  Google Scholar 

  66. Hosseini MS, Hashemi MH (2004) Flotation-spectrophotometric determination of mercury in water samples using iodide and ferroin. Anal Sci 20:1449

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support from the Education Commission Natural Science Foundation of Anhui Province (2006kj153B, 2006jql204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinlong Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1 (DOC 66 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, A., Chen, J., Wu, G. et al. Optimization of a sensitive method for the “switch-on” determination of mercury(II) in waters using Rhodamine B capped gold nanoparticles as a fluorescence sensor. Microchim Acta 164, 17–27 (2009). https://doi.org/10.1007/s00604-008-0023-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-008-0023-4

Keywords

Navigation