Skip to main content
Log in

The effect of membrane permeability on the response of a catechol biosensor

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A mathematical model is developed for the simulation of the amperometric response of a biosensor for catechol using polyphenoloxidase. The model is based on transient diffusion equations containing nonlinear terms of Michaelis-Menten for two space regions: the diffusion layer and the biomembrane containing the immobilized enzyme. The set of partial derivatives of nonlinear equations and the corresponding boundary and initial conditions was solved using the implicit finite difference technique. This numerical solution was then exploited to study the effects of permeability and thickness of the biomembrane on the maximum response of the reduction current and the amplification factor corresponding to the maximum of catalytic activity of the enzyme. This amplification factor increases with the thickness of the biomembrane while permeability is weak. In the case of the low initial concentrations (10−6 to 5.10−4 mM), its value is maximal and remains independent of substrate concentration. Also, the amplification factor is more significant when the diffusion resistance is more important, i.e. for high thicknesses or weak permeabilities of the biomembranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Blum LG, Coulet PR (1991) Biosensors principles and applications. Marcel Dekker, New York

    Google Scholar 

  2. Thévenot DR, Toth K, Durst RA, Wilson GS (1999) Electrochemical biosensors: recommended definitions and classification. Pure Appl Chem 2333:71, n°12

    Google Scholar 

  3. Stanca SE, Popescu IC, Oniciu L (2003) Biosensors for phenol derivatives using biochemical signal amplification. Talanta 61:501

    Article  CAS  Google Scholar 

  4. Wang Y, Zhu J, Zhu R, Zhu Z, Lai Z, Chen Z (2003) Chitosan/prussian blue-based biosensors. Meas Sci Technol 831:14

    Google Scholar 

  5. Tembe S, Karave M, Inamdas S, Haram S, Melo J, D’souza SF (2006) Development of electrochemical biosensor based on tyrosinase immobilised in composite biopolymeric film. Anal Biochim 349:72

    Article  CAS  Google Scholar 

  6. Sanchez-Paniaga Lopez M, Lopez-Cabarcos E, Lopez-Ruiz B (2006) Organic phase electrodes. Biomolecular Engineering 135:23

    Google Scholar 

  7. Shan D, Mousty C, Cosnier S (2003) Layered double hydroxides: an attractive material for electrochemical biosensor design. Anal Chem 3872:75

    Google Scholar 

  8. Tembe S, Inamdas S, Haram S, Karave M, D’souza SF (2007) Electrochemical biosensor for catechol using agar-guargum entrapped tyrosinase. J Biotechnol 128:80

    Article  CAS  Google Scholar 

  9. Shan D, Zhu M, Han E, Xue H, Cosnier S (2007) Calcium carbonate nanoparticles: a host matrix for the construction of highly sensitive amperometric phenol biosensor. Biosens Bioelect 23:648

    Article  CAS  Google Scholar 

  10. Kulys J, Schmid RD (1990) A sensitive enzyme electrode for phenol monitoring. Anal Lett 23(4):589

    CAS  Google Scholar 

  11. Coche-Guérente L, Desprez V, Labbé P, Therias S (1999) Amplification of amperometric biosensor responses by electrochemical substrate recycling. Part II: Experimental study of the catechol-polyphenol oxidase system immobilized in a laponite clay matrix. J Electroanal Chem 470:61

    Article  Google Scholar 

  12. Kulys JJ, Vidziunaite RA (2003) Amperometric biosensors based on recombinant laccases for phenols determination. Biosens Bioelectron 319:18

    Google Scholar 

  13. Britz D (1988) Digital simulation in electrochemistry, 2nd ed. Springer, Berlin

    Google Scholar 

  14. Bartlett PN, Pratt KFE (1993) Modelling of process in enzyme electrodes. Biosens Bioelectron 8:451

    Article  CAS  Google Scholar 

  15. Bacha S, Bergel A, Comtat M (1995) Transient response of multilayer electroenzymatic biosensors. Anal Chem 1669:67

    Google Scholar 

  16. Bacha S, Montagné M, Bergel A (1996) Modelling mass transfer with enzymatic reaction in electrochemical multilayer microreactors. Aiche J 2967:42, n°10

    Google Scholar 

  17. Coche-Guérente L, Desprez V, Labbé P, Therias S (1999) Amplification of amperometric biosensor responses by electrochemical substrate recycling. Part I: Theoretical treatment of the catechol-polyphenol oxidase system. J Electroanal Chem 470:53

    Article  Google Scholar 

  18. Baronas R, Kulys J, Ivanauskas F (2004) Modelling amperometric enzyme electrode with substrate cyclic conversion. Biosens Bioelectron 19:915

    Article  CAS  Google Scholar 

  19. Nowinski SA, Anjo DM (1989) Determination of the diffusion coefficients of catecholamines by potential step chronoamperometry. J Chem Eng Data 265:34

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mustapha Bourouina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bourouina, M., Ourari, A. & Bourouina-bacha, S. The effect of membrane permeability on the response of a catechol biosensor. Microchim Acta 163, 171–178 (2008). https://doi.org/10.1007/s00604-008-0010-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-008-0010-9

Keywords

Navigation