Selective Determination of Trace Mercury (II) after Preconcentration with 4-(2-Pyridylazo)-Resorcinol-Modified Nanometer-Sized SiO2 Particles from Sample Solutions

Abstract.

A rapid, selective method that utilize 4-(2-Pyridylazo)-resorcinol (PAR)-modified nanometer SiO2 (nanometer SiO2–PAR) as a new solid-phase extractant for preconcentration of trace mercury (II) has been developed. The adsorption property of nanometer SiO2–PAR for metal ions was studied by selectively extracting different metal ions from aqueous solutions. The results revealed an excellent affinity of the nanometer SiO2–PAR for mercury (II) in presence of interfering metal ions at pH 4. The main parameters of solid-phase extraction such as shaking time, elution and sample dilution effect were studied. The extractant shows rapid kinetic sorption, and the adsorption equilibrium of mercury (II) on nanometer SiO2–PAR was achieved in less than 2 min. The adsorbed mercury (II) was easily eluted by 4 mL of 6 mol L−1 HCl. The maximum preconcentration factor was 50. The maximum static adsorption capacity was 276 µmol g−1 at pH 4. The detection limit (3σ) was 0.43 µg L−1 for cold vapor atomic absorption spectrometry (CVAAS), and the relative standard deviation of the eight replicate determinations was 2.4% for the determination of 2.0 µg of Hg(II) in 100 mL water sample. The method was applied to the determination of trace mercury (II) in sample solutions with satisfactory results.

This is a preview of subscription content, access via your institution.

References

  1. B Hultberg A Andersson A Isaksson (1998) Toxicology 126 203 Occurrence Handle1:CAS:528:DyaK1cXjsVent7k%3D Occurrence Handle10.1016/S0300-483X(98)00016-X

    CAS  Article  Google Scholar 

  2. Antochshuk V, Jaroniec M (2002) Chem Commun pp 258

  3. G Z Fang J Tan X P Yan (2005) Anal Chem 77 IssueID6 1734 Occurrence Handle1:CAS:528:DC%2BD2MXovFSluw%3D%3D Occurrence Handle10.1021/ac048570v

    CAS  Article  Google Scholar 

  4. FACSS (XXV) Conference, book of abstracts (1998) Austin, TX, USA

  5. S E Manahan (1972) Environmental chemistry Willard Grant Press Massachusetts, Boston

    Google Scholar 

  6. Y W Liu Y Guo X J Chang S M Meng D Yang B J Din (2005) Microchim Acta 149 95 Occurrence Handle1:CAS:528:DC%2BD2MXksFymtw%3D%3D Occurrence Handle10.1007/s00604-004-0296-1

    CAS  Article  Google Scholar 

  7. B Sengupta J Das (1989) Anal Chim Acta 219 339 Occurrence Handle1:CAS:528:DyaL1MXmtVyht7Y%3D Occurrence Handle10.1016/S0003-2670(00)80367-0

    CAS  Article  Google Scholar 

  8. C Y Liu (1987) Anal Chim Acta 192 85 Occurrence Handle1:CAS:528:DyaL2sXit1Knurs%3D Occurrence Handle10.1016/S0003-2670(00)85690-1

    CAS  Article  Google Scholar 

  9. E M Mohamed (1999) Anal Chim Acta 398 297 Occurrence Handle10.1016/S0003-2670(99)00429-8

    Article  Google Scholar 

  10. H A M Elamahadi G M Greenway (1993) J Anal Atom Spectrom 8 1011 Occurrence Handle10.1039/ja9930801011

    Article  Google Scholar 

  11. H Emteborg D C Baxter W Frech (1993) Analyst 118 1007 Occurrence Handle1:CAS:528:DyaK3sXmtlemsb4%3D Occurrence Handle10.1039/an9931801007

    CAS  Article  Google Scholar 

  12. F G Matilde P G Rosario B G Nerea S M Alfredo (1994) Talanta 41 1833 Occurrence Handle10.1016/0039-9140(94)E0123-9

    Article  Google Scholar 

  13. E M Mohamed M O Maher E A Mohamed (2000) Anal Chim Acta 415 33 Occurrence Handle10.1016/S0003-2670(00)00839-4

    Article  Google Scholar 

  14. E M Mohamed A G Gamal (2000) Talanta 51 77 Occurrence Handle10.1016/S0039-9140(99)00249-0

    Article  Google Scholar 

  15. M S Ezzat B S Mohamed A A Salwa (2004) Anal Chim Acta 523 133 Occurrence Handle10.1016/j.aca.2004.07.002

    Article  Google Scholar 

  16. A Henglein (1989) Chem Rev 89 1861 Occurrence Handle1:CAS:528:DyaL1MXmsVSmsr4%3D Occurrence Handle10.1021/cr00098a010

    CAS  Article  Google Scholar 

  17. Q J Xue K Xu (2000) Progress in Chem (Chinese) 12 431 Occurrence Handle1:CAS:528:DC%2BD3MXhtFKqsbc%3D

    CAS  Google Scholar 

  18. K Hadjiivanov K Klissurski M Kantcheva A Davydov (1991) J Chem Soc Faraday Trans 87 907 Occurrence Handle1:CAS:528:DyaK3MXitlGls7o%3D Occurrence Handle10.1039/ft9918700907

    CAS  Article  Google Scholar 

  19. D M Fuerstenau K Osseo-Asare (1987) J Colloid Interface Sci 118 524 Occurrence Handle1:CAS:528:DyaL2sXlsVais7Y%3D Occurrence Handle10.1016/0021-9797(87)90487-5

    CAS  Article  Google Scholar 

  20. E Vassileva K Hadjiivanov P Mandjukov (1994) Colloids Surf A 90 9 Occurrence Handle10.1016/0927-7757(94)02890-7

    Article  Google Scholar 

  21. J Ragai S T J Selim (1987) Colloid Interface Sci 115 139 Occurrence Handle1:CAS:528:DyaL2sXjvFSnug%3D%3D Occurrence Handle10.1016/0021-9797(87)90018-X

    CAS  Article  Google Scholar 

  22. V Bolis B Fubini E Giamello (1991) Mater Chem Phys 29 153 Occurrence Handle1:CAS:528:DyaK3MXmvVOqurc%3D Occurrence Handle10.1016/0254-0584(91)90012-J

    CAS  Article  Google Scholar 

  23. P Liang Y C Qin B Hu T Y Peng Z C Jiang (2001) Anal Chim Acta 440 207 Occurrence Handle1:CAS:528:DC%2BD3MXltFyksLw%3D Occurrence Handle10.1016/S0003-2670(01)01010-8

    CAS  Article  Google Scholar 

  24. E Vassileva B Varimezova K Hadjiivanov (1996) Anal Chim Acta 336 141 Occurrence Handle1:CAS:528:DyaK28XnsFamur0%3D Occurrence Handle10.1016/S0003-2670(96)00336-4

    CAS  Article  Google Scholar 

  25. E Vassileva N Furuta (2001) Fresenius J Anal Chem 370 52 Occurrence Handle1:CAS:528:DC%2BD3MXjtFGmsb8%3D Occurrence Handle10.1007/s002160100744

    CAS  Article  Google Scholar 

  26. E Vassileva K Hadjiivanov (1997) Fresenius J Anal Chem 357 881 Occurrence Handle1:CAS:528:DyaK2sXisFOjt70%3D Occurrence Handle10.1007/s002160050267

    CAS  Article  Google Scholar 

  27. R D Badley W T Ford F J McEnroe R A Assinks (1990) Langmuir 6 792 Occurrence Handle1:CAS:528:DyaK3cXhs1Grs7o%3D Occurrence Handle10.1021/la00094a013

    CAS  Article  Google Scholar 

  28. Y Q Huo Y C Zhai (2003) Nanomaterial & Structure (Chinese) 9 26

    Google Scholar 

  29. T M Florence (1982) Talanta 29 345 Occurrence Handle1:CAS:528:DyaL38Xkt1yiurk%3D Occurrence Handle10.1016/0039-9140(82)80169-0

    CAS  Article  Google Scholar 

  30. E S Miranda Carlos B F Reis N Baccan A P Packer M F Gine (2002) Anal Chim Acta 453 301 Occurrence Handle10.1016/S0003-2670(01)01212-0

    Article  Google Scholar 

  31. Nyquist R A, Kagel R O (1971) Infrared spectra of inorganic compounds. New York and London Academic Press, pp 94

  32. Q N Dong (1997) IR spectral method Publishing House of Chemical Industry Beijing 104

    Google Scholar 

  33. Y Z X Shi X Z Sun Y Y Jiang (1988) Organic compound spectra and chemistry determination Publishing House of Jiangsu Science and Technology Nanjing 75

    Google Scholar 

  34. H Q Zhong (1984) Elementary IR spectral methods Publishing House of Chemical Industry Beijing 126

    Google Scholar 

  35. R J Kvitek J F Evans P W Carr (1982) Anal Chim Acta 144 93 Occurrence Handle1:CAS:528:DyaL3sXot1yhsA%3D%3D Occurrence Handle10.1016/S0003-2670(01)95522-9

    CAS  Article  Google Scholar 

  36. V Camel (2003) Spectrochim Acta Part B 58 1177 Occurrence Handle10.1016/S0584-8547(03)00072-7

    Article  Google Scholar 

  37. A Maquieira H Elmahadi R Puchades (1994) Anal Chem 66 3632 Occurrence Handle1:CAS:528:DyaK2cXmtFansbs%3D Occurrence Handle10.1021/ac00093a016

    CAS  Article  Google Scholar 

  38. N Lian X J Chang H Zhen S Wang Y M Cui Y H Zhai (2005) Microchim Acta 151 181 Occurrence Handle10.1007/s00604-005-0381-0

    Article  Google Scholar 

  39. J C Miller J N Miller (1988) Statistics for analytical chemistry Ellis Horwood New York 53

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xijun Chang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhai, Y., Chang, X., Cui, Y. et al. Selective Determination of Trace Mercury (II) after Preconcentration with 4-(2-Pyridylazo)-Resorcinol-Modified Nanometer-Sized SiO2 Particles from Sample Solutions. Microchim Acta 154, 253–259 (2006). https://doi.org/10.1007/s00604-006-0488-y

Download citation

  • Key words: Nanometer SiO2; 4-(2-Pyridylazo)-resorcinol; mercury (II); preconcentration; determination.