Skip to main content
Log in

DNA Quantification in Nanoliter Volumes

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract.

In recent years high throughput screening (HTS) methods have become an essential tool in discovery programs within the analytical and pharmaceutical industry. In addition, genomics and proteomics have flourished as a result of the advancements made in terms of miniaturization and parallelization of fluorescence assays, this allowing for a decrease of the consumption of expensive materials and leading to faster times of analysis. Sample volumes can be drastically reduced (down to 75 nL per cavity) compared to assays performed in microtiter plates by making use of nanotiter plates. The article describes the development of a miniaturized exonuclease-based assay that can be used for quantitative determination of non-labeled DNA. The assay utilizes fluorescence resonance energy transfer (FRET) and is carried out in a homogeneous format, with detection in the form of a direct readout of the binding and exonuclease event. In this method a fluorescence labeled FRET probe is incubated for hybridization with the non-labeled sample DNA. Exonuclease is added and cuts the double stranded specifically. The FRET is interrupted and the increasing fluorescence can be analyzed directly without separation or purification. The homogeneous DNA assay uses only commercially available materials and the entire assay takes less than 15 min. By using a FRET probe consisting of a DNA strand labeled on one end with a fluorophore and with an acceptor molecule on the other, there is no need of labeling the sample DNA. The assay enables facile differentiation between DNAs with complementary, non-complementary and single nucleotide polymorphism sequences, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • R P Hertzberg A J Pope (2000) Curr Opin Chem Biol 4 445 Occurrence Handle10.1016/S1367-5931(00)00110-1 Occurrence Handle1:CAS:528:DC%2BD3cXlvVCisbk%3D

    Article  CAS  Google Scholar 

  • S Fox S Farr-Jones M A Yund (1999) J Biomol Screen 4 183 Occurrence Handle10.1177/108705719900400405 Occurrence Handle1:CAS:528:DyaK1MXmtVyku7c%3D

    Article  CAS  Google Scholar 

  • T J Burke K R Loniello J A Beebe K M Ervin (2003) Comb Chem High Throughput Screening 6 183 Occurrence Handle1:CAS:528:DC%2BD3sXjsVant7w%3D

    CAS  Google Scholar 

  • A Fowler D Swift E Longman A Acornley P Hemsley D Murray J Unitt I Dale E Sullivan M Coldwell (2002) Anal Biochem 308 223 Occurrence Handle10.1016/S0003-2697(02)00245-2 Occurrence Handle1:CAS:528:DC%2BD38Xot12ks7w%3D

    Article  CAS  Google Scholar 

  • S S Pin I Kariv N R Graciani K R Oldenburg (1999) Anal Biochem 275 156 Occurrence Handle10.1006/abio.1999.4331 Occurrence Handle1:CAS:528:DyaK1MXntFWqsrY%3D

    Article  CAS  Google Scholar 

  • Rigler R, Elson E (2001) Fluorescence correlation spectroscopy, Springer, Berlin

  • L V Upham (1999) Lab Rob Autom 11 324 Occurrence Handle1:CAS:528:DyaK1MXotV2itbs%3D

    CAS  Google Scholar 

  • M Ferrer P Zuck G Kolodin S Mao R R Peltier C Bailey S J Gardell B Strulovici J Inglese (2003) Anal Biochem 317 94 Occurrence Handle10.1016/S0003-2697(03)00048-4 Occurrence Handle1:CAS:528:DC%2BD3sXjt1Kjurs%3D

    Article  CAS  Google Scholar 

  • D L Earnshaw A J Pope (2001) J Biomol Screen 6 39 Occurrence Handle10.1177/108705710100600105 Occurrence Handle1:CAS:528:DC%2BD3MXhsFCrurk%3D

    Article  CAS  Google Scholar 

  • M Seidel D M Dankbar G Gauglitz (2004) Anal Bioanal Chem 379 904 Occurrence Handle10.1007/s00216-004-2651-9 Occurrence Handle1:CAS:528:DC%2BD2cXntVehu70%3D

    Article  CAS  Google Scholar 

  • R Luthra J A McBride F Cabanillas A Sarris (1998) Am J Pathol 153 63 Occurrence Handle1:CAS:528:DyaK1cXks1Grs7k%3D

    CAS  Google Scholar 

  • D T Newby T L Hadfield F F Roberto (2003) Appl Environ Microbiol 69 4753 Occurrence Handle10.1128/AEM.69.8.4753-4759.2003 Occurrence Handle1:CAS:528:DC%2BD3sXmsFWrt7c%3D

    Article  CAS  Google Scholar 

  • V Zhou S Han A Brinker H Klock J Caldwell X Gu (2004) Anal Biochem 331 349 Occurrence Handle10.1016/j.ab.2004.04.011 Occurrence Handle1:CAS:528:DC%2BD2cXlvVWjurk%3D

    Article  CAS  Google Scholar 

  • M Chee R Yang E Hubbell A Berno X C Huang D Stern J Winkler D J Lockhart M S Morris S P A Fodor (1996) Science 274 610 Occurrence Handle10.1126/science.274.5287.610 Occurrence Handle1:CAS:528:DyaK28XmsVWrtr4%3D

    Article  CAS  Google Scholar 

  • R Elghanian J J Storhoff R C Mucic R L Letsinger C A Mirkin (1997) Science 277 1078 Occurrence Handle10.1126/science.277.5329.1078 Occurrence Handle1:CAS:528:DyaK2sXlsFSisb0%3D

    Article  CAS  Google Scholar 

  • T Förster (1948) Ann Phys 2 55

    Google Scholar 

  • T Heyduk (2002) Curr Opin Biotechnol 13 292 Occurrence Handle10.1016/S0958-1669(02)00332-4 Occurrence Handle1:CAS:528:DC%2BD38XmsFOns70%3D

    Article  CAS  Google Scholar 

  • K Truong M Ikura (2001) Curr Opin Struct Biol 11 573 Occurrence Handle10.1016/S0959-440X(00)00249-9 Occurrence Handle1:CAS:528:DC%2BD3MXntlyis7c%3D

    Article  CAS  Google Scholar 

  • M Daub R M Kaack O Gutmann C P Steinert R Niekrawietz P Koltay B de Heij R Zengerle (2004) Nanoengineered Assemblies and Advanced Micro/Nanosystems 820 381 Occurrence Handle1:CAS:528:DC%2BD2cXot12iur0%3D

    CAS  Google Scholar 

  • O Gutmann R Niekrawietz R Kuehlewein C P Steinert B de Heij R Zengerle M Daub (2004) Sens Actuators A: Physical 116 IssueID2 187

    Google Scholar 

  • C P Steinert I Goutier O Gutmann H Sandmaier M Daub B de Heij R Zengerle (2004) Sens Actuators A: Physical 116 IssueID1 171

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina D. Käppel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Käppel, N., Dankbar, D. & Gauglitz, G. DNA Quantification in Nanoliter Volumes. Microchim Acta 154, 65–71 (2006). https://doi.org/10.1007/s00604-005-0481-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-005-0481-x

Navigation