Skip to main content
Log in

Applications of Carbon Nanotubes in Electrochemical DNA Biosensors

  • Review
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract.

The discovery of carbon nanotubes (CNTs) about a decade ago has brought fascinating evolutions in electronics, material industry, as well as bio-techniques for DNA analysis, gene therapy, drug delivery etc. It has also dramatically promoted the development of DNA biosensing techniques, especially electrochemical DNA biosensor. The application of CNTs in electrochemical DNA biosensors includes two main aspects: on one hand, using CNTs as a novel substrate not only enables immobilization of DNA molecules but also serves as a powerful amplifier to amplify signal transduction event of DNA hybridization. On the other hand, CNTs can also be employed as a powerful carrier to pre-concentrate enzymes or electroactive molecules for electrochemical sensing of DNA hybridization as a novel indicator. In this review, we place emphasis on recent studies of CNTs-based electrochemical DNA biosensors based on these two aspects, with advantages and disadvantages of each aspect introduced herein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • S Iijima (1991) Nature 354 56 Occurrence Handle10.1038/354056a0 Occurrence Handle1:CAS:528:DyaK38Xmt1Ojtg%3D%3D

    Article  CAS  Google Scholar 

  • (a) Dresselhaus M S, Dresselhaus G, Eklund P (1996) Academic, San Diego; (b) Qin L C, Zhao X, Hirahara K, Miyamoto Y, Ando Y, Iijima S (2000) Nature 408: 50

  • (a) Mintmire J W, Dunlap B I, White C T (1992) Phys Rev Lett 68: 631; (b) McCreery R L (1991) in Electroanalytical Chemistry, edited by Bard A J, Marcel Dekker, New York; (c) Baughman R H, Zakhidov A A, de Heer W A (2002) Science 297: 787

  • (a) Hiroyuki W, Chikara M, Taishi S, Kei S, Masaaki S (2001) Appl Phys Lett 79: 2462; (b) Chen L W, Haushalter K A, Lieber C M, Verdine G L (2002) Chem Biol 9: 345; (c) Lee M H, Leng C H, Chang Y C, Chou C C, Chen Y K, Hsu F F, Chang C S, Wang A H J, Wang T F (2004) Biochem Biophys Res Commu 323: 845; (d) Shimotani K, Shigematsu T, Manabe C, Watanabe H, Shimizu M (2003) J Chem Phys 118: 8016

  • (a) Dupraz C J F, Nickels P, Beierlein U, Huynh W U, Simmel F C (2003) Superlattices and Microstruct 33: 369; (b) Keren K, Berman R S, Buchstab E, Sivan U, Braun E (2003) Science 302: 1380; (c) Hazani M, Shvarts D, Peled D, Sidorov V, Naaman R (2004) Appl Phys Lett 85: 5025

  • (a) Pantarotto D, Briand J P, Prato M, Bianco A (2004) Chem Commun 1: 16; (b) Kam N W S, Jessop T C, Wender P A, Dai H (2004) J Am Chem Soc 126: 6850

  • (a) Li N Q, Wang J X, Li M X (2003) Rev Anal Chem 22: 19; (b) Sherigara B S, Kutner W, D’Souza F (2003) Electroanal 15: 753; (c) Li J, Koehne J E, Cassell A M, Chen H, Ng H T, Ye Q, Fan W, Han J, Meyyappan M (2005) Electroanal 17: 15

  • (a) Wang J, Rivas G, Cai X, Paleček E, Nielsen P, Shiraishi H, Dontha N, Luo D, Parrado C (1997) Anal Chim Acta 347: 1; (b) Zhai J H, Cui H, Yang R F (1997) Biotechnol Adv 15: 43; (c) Paddle B M (1996) Biosen Bioelectr 11: 1079

  • (a) Kerman K, Kobayashi M, Tamiya E (2004) Meas Sci Technol 15: R1; (b) Fritzsche W, Taton T A (2003) Nanotechnology 14: R63

  • (a) Braun E, Eichen Y, Sivan U, Ben-Yoseph G (1998) Nature 391: 775; (b) Park S J, Taton T A, Mirkin C A (2002) Science 295: 1503

  • (a) Li H, Rothberg L J (2004) Anal Chem 76: 5414; (b) Li Z, Jin R C, Mirkin C A, Letsinger R L (2002) Nucleic Acids Res 30: 1558

  • (a) Zhao H Q, Lin L, Tang J A, Duan M X, Jiang L (2001) Chin Sci Bull 46: 1074; (b) Su M, Li S Y, Dravid V P (2003) Appl Phys Lett 82: 3562

  • (a) Paleček E (1960) Nature 188: 656; (b) Paleček E (1996) Electroanal 8: 7

  • (a) Jelen F, Yosypchuk B, Kourilova A, Novotny L, Paleček E (2002) Anal Chem 74: 4788; (b) Farias P A M, Wagener A D M, Bastos B R, da Silva A T, Castro A A (2003) Talanta 61: 829; (c) Hason S, Jelen F, Fojt L, Vetterl V (2005) J Electroanal Chem 577: 263

  • (a) Zhou L, Rusling J F (2001) Anal Chem 73: 4780; (b) Gore M R, Szalai V A, Ropp P A, Yang I V, Silverman J S, Thorp H H (2003) Anal Chem 75: 6586; (c) Dennany L, Forster R J, Rusling J F (2003) J Am Chem Soc 125: 5213

  • M L Pedano G A Rivas (2004) Electrochem Commun 6 10 Occurrence Handle10.1016/j.elecom.2003.10.008 Occurrence Handle1:CAS:528:DC%2BD3sXovFOju7k%3D

    Article  CAS  Google Scholar 

  • K B Wu J J Fei W Bai S S Hu (2003) Anal Bioanal Chem 376 205 Occurrence Handle1:CAS:528:DC%2BD3sXjs1KnsL8%3D

    CAS  Google Scholar 

  • J Wang A N Kawde M Musameh (2003) Analyst 128 912 Occurrence Handle1:CAS:528:DC%2BD3sXltVWnsbY%3D

    CAS  Google Scholar 

  • (a) Wang J, Musameh M, Lin Y (2003) J Am Chem Soc 125: 2408; (b) Wang Z H, Liu J, Liang Q L, Wang Y M, Luo G (2002) Analyst 127: 653; (c) Zhao Y, Zhang W D, Chen H, Luo Q M (2002) Talanta 58: 529

  • (a) Thorp H H (1998) TIBTECH 16: 117; (b) Sistare M F, Holmberg R C, Thorp H H (1999) J Phys Chem B 103: 10718

  • K Kerman Y Morita Y Takamura E Tamiya (2005) Anal Bioanal Chem 381 1114 Occurrence Handle10.1007/s00216-004-3007-1 Occurrence Handle1:CAS:528:DC%2BD2MXisFygtbY%3D

    Article  CAS  Google Scholar 

  • H Cai X N Cao Y Jiang P G He Y Z Fang (2003) Anal Bioanal Chem 375 287 Occurrence Handle1:CAS:528:DC%2BD3sXosVOntA%3D%3D

    CAS  Google Scholar 

  • G Marrazza I Chianella M Mascini (1999) Anal Chim Acta 387 297 Occurrence Handle10.1016/S0003-2670(99)00051-3 Occurrence Handle1:CAS:528:DyaK1MXitlGqurg%3D

    Article  CAS  Google Scholar 

  • N N Zhu Z Chang P G He Y Z Fang (2005) Anal Chim Acta 545 21 Occurrence Handle1:CAS:528:DC%2BD2MXlsFGjuro%3D

    CAS  Google Scholar 

  • Y Xu L Yang P G He Y Z Fang (2005) J Biomed Nanotech 1 1

    Google Scholar 

  • G F Cheng J Zhao Y H Tu P G He Y Z Fang (2005) Anal Chim Acta 533 11 Occurrence Handle10.1016/j.aca.2004.10.044 Occurrence Handle1:CAS:528:DC%2BD2MXit1Ogu7o%3D

    Article  CAS  Google Scholar 

  • D H Jung B H Kim Y K Ko M S Jung S O Jung S Y Lee H T Jung (2004) Langmuir 20 8886 Occurrence Handle1:CAS:528:DC%2BD2cXntF2htr0%3D

    CAS  Google Scholar 

  • (a) Cai H, Xu Y, He P G, Fang Y Z (2003) Electroanal 15: 1864; (b) Xu Y, Jiang Y, Cai H, He P G, Fang Y Z (2004) Anal Chim Acta 516: 19

  • (a) Dresselhaus M S, Dresselhaus G, Avouris P (2001) Carbon nanotubes: synthesis, structure, properties, and applications, Springer, Berlin; (b) Saito R, Dresselhaus G, Dresselhaus M S (1998) Physical properties of carbon nanotubes, Imperial College Press, London

  • (a) Li J, Ng H T, Cassell A, Fan W, Chen H, Ye Q, Koehne J, Han J, Meyyappan M (2003) Nano Lett 3: 597; (b) Koehne J, Li J, Cassell A M, Chen H, Ye Q, Ng H T, Han J, Meyyappan M (2004) J Materials Chemistry 14: 676

  • (a) He P G, Dai L M (2004) Chem Commun 3: 348; (b) Qu L T, He P G, Li L C, Gao M, Wallace G, Dai L M (2005) Proc SPIE 5732: 84

  • S G Wang R Wang P J Sellin Q Zhang (2004) Biochem Biophys Res Commu 325 1433 Occurrence Handle1:CAS:528:DC%2BD2cXhtVSrsbvN

    CAS  Google Scholar 

  • B J Taft A D Lazareck G D Withey A J Yin J M Xu S O Kelley (2004) J Am Chem Soc 126 12750 Occurrence Handle1:CAS:528:DC%2BD2cXns1KmtLk%3D

    CAS  Google Scholar 

  • (a) Hamon M A, Hu H, Bhowmik P, Niyogi S, Zhao B, Itkis M E, Haddon R C (2001) Chem Phys Lett 347: 8; (b) Hu H, Bhowmik P, Zhao B, Hamon M A, Itkis M E, Haddon R C (2001) Chem Phys Lett 345: 25; (c) Niyogi S, Hamon M A, Hu H, Zhao B, Bhowmik P, Sen R, Itkis M E, Haddon R C (2002) Acc Chem Res 35: 1105; (d) Williams K A, Veenhuizen P T M, de la Torre B G, Eritja R, Dekker C (2002) Nature 420: 761; (e) Hu H, Zhao B, Itkis M E, Haddon R C (2003) J Phys Chem B 107: 13838; (f) Zhao B, Hu H, Bekyarova E, Itkis M E, Niyogi S, Haddon R C (2004) Carbon nanotubes, chemistry, Dekker Encyclopedia of Nanoscience and Nanotechnology, p 493

  • (a) Patolsky F, Katz E, Bardea A, Willner I (1999) Langmuir 12: 3703; (b) Caruana D J, Heller A (1999) J Am Chem Soc 121: 769; (c) Zhang Y, Kim H, Heller A (2003) Anal Chem 75: 3267; (d) Patolsky F, Litchenstein A, Willner I (2000) Angew Chem Int Ed 39: 940

  • J Wang (2005) Analyst 130 421 Occurrence Handle1:CAS:528:DC%2BD2MXitlOlt78%3D

    CAS  Google Scholar 

  • J Wang G D Liu M R Jan Q Y Zhu (2003) Electrochem Commu 5 1000 Occurrence Handle1:CAS:528:DC%2BD3sXos1ant7k%3D

    CAS  Google Scholar 

  • J Wang G D Liu M R Jan (2004) J Am Chem Soc 126 3010 Occurrence Handle1:CAS:528:DC%2BD2cXht12gtr0%3D

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuzhi Fang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, P., Xu, Y. & Fang, Y. Applications of Carbon Nanotubes in Electrochemical DNA Biosensors. Microchim Acta 152, 175–186 (2006). https://doi.org/10.1007/s00604-005-0445-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-005-0445-1

Navigation